Correlation between Morphology and Transport Properties of Quasi-free-standing Monolayer Graphene

<u>Yuya Murata¹</u>, Torge Mashoff², Makoto Takamura³, Shinichi Tanabe³, Hiroki Hibino³, Fabio Beltram^{1,2}, and Stefan Heun¹

¹NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy

²Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy

³NTT Basic Research Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan E-mail : yuya.murata@nano.cnr.it

Quasi-free-standing monolayer graphene (QFMLG), obtained by intercalating hydrogen at the interface of buffer layer and SiC(0001), is efficiently decoupled from the substrate and a promising material for wafer-scale graphene-based nanoelectronics.¹⁻³⁾ However, the mobility of QFMLG (~3000 cm²V⁻¹s⁻¹) is limited to a value lower than exfoliated graphene on SiO₂, and the carrier scattering has not been fully understood. Recently it has been reported that the mobility of QFMLG depends on the substrate temperature during the hydrogen intercalation process, and the highest mobility is obtained at 700-800°C.⁴ These measurements suggested that the carrier scattering is mainly caused by charged impurities at 600 and 800°C, and at 950°C defects cause additional scattering. We have used scanning tunneling microscopy (STM) to study the surface structure of QFMLG formed at several hydrogen intercalation temperatures, and investigated the relationship with transport measurements.⁵

Our STM observations reveal that the QFMLG formed at 600°C and 800°C shows small dark spots with a diameter of 1.5 nm, depth of 15-25 pm, and density of 1×10^{13} cm⁻², while samples formed at 1000°C show large dark spots with diameter 4-10 nm, depth 250 pm, and density 6×10^{10} cm⁻². The dark spots at 600°C and 800°C partially align with a periodicity of 1.8 nm, corresponding to the quasi-(6x6) reconstruction of the buffer layer. This implies that hydrogen intercalation in our samples is not complete at 600°C and 800°C, and the remaining patches of Si dangling bonds are observed as dark spots. Since the depth of the dark spot at 1000°C corresponds to the height of a SiC(0001) bilayer, they are identified as holes in the SiC substrate, probably due to etching by hydrogen at high temperature. This is consistent with transport measurements and suggests that the incomplete hydrogen intercalation at 600 and 800°C scatters carriers as charged impurities, while the holes in the SiC substrate at 1000°C act as defects.

We conclude that a higher mobility of QFMLG can be obtained by optimizing the conditions for H intercalation while staying below the temperature at which holes appear in SiC substrate.

In the presentation, we will discuss our recent results on the Si dangling bonds obtained in low temperature STM.

References

- 1) C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. 103, 246804 (2009).
- 2) F. Speck, J. Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H. B. Weber, and Th. Seyller, Appl. Phys. Lett. **99**, 122106 (2011).
- 3) S. Goler, C. Coletti, V. Piazza, P. Pingue, F. Colangelo, V. Pellegrini, K. V. Emtsev, S. Forti, U. Starke, F. Beltram, and S. Heun, Carbon **51**, 249 (2013).
- 4) S. Tanabe, M. Takamura, Y. Harada, H. Kageshima, and H. Hibino, Jpn. J. Appl. Phys. 53, 04EN01 (2014).
- 5) Y. Murata, T. Mashoff, M. Takamura, S. Tanabe, H. Hibino, F. Beltram, and S. Heun, Appl. Phys. Lett. 105, 221604 (2014).