Tomography and manipulation of quantum Hall edge channels by Scanning Gate Microscopy

<u>N. Paradiso</u>

Scuola Normale Superiore di Pisa

Discussione della Tesi di Perfezionamento

Advisors

Prof. F. Beltram, dr. S. Heun

Co-workers

- NEST, Pisa, Italy: S. Roddaro, L. Sorba
- TASC, Trieste, Italy: G. Biasiol

SGM Group

The road to quantum computing

The road to quantum computing

Why a quantum Hall quantum Computer?

Fundamental reasons: QH liquids at peculiar filling factors (5/2, 12/5) are expected to **exhibit non-Abelian excitations**. Since quantum operations on such objects are expected to only depend on the **topology**, they could implement **fault tolerant calculations**. [Nayak *et al.*, Rev. Mod. Phys. **80**, 1083.]

REVIEWS OF MODERN PHYSICS, VOLUME 80, JULY-SEPTEMBER 2008

Non-Abelian anyons and topological quantum computation

a gate "NOT" operating with non-Abelian quasiparticles

[Nayak et al., Rev. Mod. Phys. 80, 1083 (2003)]

Proposal for Production and Detection of Entangled Electron-Hole Pairs in a Degenerate Electron Gas

Practical reasons: highly coherent,

dissipationless transport by means of chiral **1D channels**

- Solid state devices.
- Chiral channels insensitive to backscattering.
- Single-fermion source
- Perfect transmission

 Accurate control of the chemical potential, tunnel probability, and occupation distribution of individual channels

National Enterprise for nanoScience and nanoTechnolog

SGM Group

High design flexibility

The non-interacting picture of the QH effect

The non-interacting picture of the QH effect

• Edge state picture: *current is carried by chiral 1D channels*

Roddaro et al.: PRL **90** (2003) 046805 Roddaro et al.: PRL **93** (2004) 046801 Roddaro et al.: PRL **95** (2005) 156804 Roddaro, Paradiso et al.: PRL **103** (2009) 016802

National Enterprise for nanoScience and nanoTechnology

SGM Group

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: so far, MZI only work with electron-like excitations. The interference of fractional quasiparticles is inexplicably still elusive

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

MG2

Ji et al.: Nature **422**, 415 (2003)

Preamp

MG1

а

b

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: so far, MZI only work with electron-like excitations. The interference of fractional quasi-particles is inexplicably still elusive

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

National Enterprise for nanoScience and nanoTechnology

Ji et al.: Nature 422, 415 (2003)

SGM Group

Fractional structures in integer edges

Our first transport measurements found evidences of fractional structures (Luttinger liquid-like) in a single edge (Fermi liquid).

-S. Roddaro, <u>N. Paradiso</u>, et al: "Tuning Nonlinear Charge Transport between Integer and Fractional Quantum Hall States"; Phys. Rev. Lett. **103**, (2009) 016802.

Need for spatially resolved measurements

SGM Group

Non-interacting VS interacting picture

• The self consistent potential due to e-e interactions modifies the edge structure

•For any realistic potential the density goes smoothly to zero.

•Alternating compressible and incompressible stripes arise at the sample edge

Incompressible stripes: •The electron density is constant •The potential has a jump

Compressible stripes: •The electron density has a jump •The potential is constant ←

Edge channel tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- Bulk filling factor v=4
- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors g₁ = g₂ = 0

N. Paradiso et al., Physica E 42 (2010) 1038.

tip position (µm)

SGM Group

Imaging fractional structures in integer channels

The Reconstruction Picture suggests that at the edge of a smooth **integer** edge a series of compressible/ **incompressible fractional stripes** can occur. We used the SGM technique to image them.

N. Paradiso *et al.* Phys. Rev. Lett. 108, 246801 (2012)

SGM Group

Fractional edge reconstruction

Fractional edge reconstruction

The IS width values (colored dots àæòî) obtained from SGM images compare well with the reconstruction picture predictions

Can we exploit the non-trivial edge structure?

The state of the art of electronic quantum interferometry

D1

At the **beam splitters** the electrons are backscattered into the **counterpropagating edge** through two quantum point contacts (QPCs)

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

BS1

S

we induce backscattering by reducing this distance

A new architecture for QH interferometry

a simply connected QH interferometer: the proposal of *Giovannetti et al.*

PHYSICAL REVIEW B 77, 155320 (2008)

Multichannel architecture for electronic quantum Hall interferometry

Vittorio Giovannetti,¹ Fabio Taddei,¹ Diego Frustaglia,² and Rosario Fazio^{1,3}

New architecture: beam splitters induce mixing between co-propagating edge channels

Advantages:

simply connected topology (no air bridges)

•very small Φ area, only a few flux quanta are involved

•the device is scalable: it is possible to put many devices in series

SGM Group

A new architecture for QH interferometry

a simply connected QH interferometer: the proposal of *Giovannetti et al.*

PHYSICAL REVIEW B 77, 155320 (2008)

Multichannel architecture for electronic quantum Hall interferometry

Vittorio Giovannetti,1 Fabio Taddei,1 Diego Frustaglia,2 and Rosario Fazio1,3

the only elusive parts are the **beam mixers** between **co-propagating channels**

coherent inter-channel mixing

Is it possible to study and image the microscopic details of the inter-channel scattering?

Studying the inter-channel equilibration

Edge states in the regimes of integer and fractional quantum Hall effects

E V Deviatov

Physics - Uspekhi 50 (2) 197 - 218 (2007)

devices with fixed interaction length *d*: elusive determination of the microscopic details of the equilibration mechanisms

The oppurtunity of the Scanning Gate Microscopy

Our technique allows to selectively control the channel trajectory

Our idea: exploit the mobile depletion spot induced by the SGM to continuously tune *d*

Experimental setup

I_B

÷

Calibration step

Calibration step

Imaging the inter-channel equilibration

SGM map of the I_B signal: direct imaging of the equilibration process.

By grounding the upper contact an imbalance is established between the edges.

Imaging the inter-channel equilibration

The profiles of $G_B(d)$ along the trajectory show a strict dependance on the local details

1.0

0.9

DC bias

Imaging the inter-channel equilibration

Tight binding simulations

Next step: a simply connected MZI

Nonlinear regime

Two mechanisms for the inter-channel scattering

At high bias (Δµ≈ħω_c) vertical transition with photon emission are enabled (threshold and saturation)

$$dI = dx \frac{2e\mathcal{T}_0}{hv_d} \int_{-\infty}^{\infty} (f_{\mu_i,T}(\epsilon) - f_{\mu_o,T}(\epsilon))d\epsilon = dx \frac{2e^2\mathcal{T}_0}{hv_d} \Delta V(x)$$

 $\Delta \mu(\mathbf{x})$

0000

 (\mathbf{a})

$$1.0 \\ 0.0 \\ -1.0 \\ -2.0 \\ -3.0 \\ -5.0 \\ -5.0 \\ -5.0 \\ -7.0 \\ -2.0 \\ -1.5 \\ -1.0 \\ -0.5 \\ 0.0 \\ -2.0 \\ -1.5 \\ -1.0 \\ -0.5 \\ 0.0 \\ -0.5 \\$$

$$dI = dx \frac{2eT_1}{hv_d} \int_{-\infty}^{\infty} [f_{\mu_i,T}(\epsilon)(1 - f_{\mu_o,T}(\epsilon - \hbar\omega_c))]d\epsilon = dx \frac{2eT_1}{hv_d} \left(\frac{e\Delta V(x) - \hbar\omega_c}{1 - e^{\frac{\hbar\omega_c - e\Delta V(x)}{h_BT}}}\right)$$

SGM Group

Impact of the electron heating

Electron heating due to injection of hot carriers:

The relaxation of hot carriers induces a dramatic temperature increase. This is why the transition is smoothened and the threshold voltage reduced for high *d*

Summary and outlook

Thank you for your attention!

Nicola Paradiso

Scuola Normale Superiore, Pisa nicola.paradiso@sns.it

How everything began... [LT-AFM installation, Pisa, October 2007]

National Enterprise for nanoScience and nanoTechnology

ES

