Growth and characterization of graphene on SiC(0001) and SiC(000-1)

D. Convertino¹, V. Miseikis¹, T. Mashoff¹, P. Pingue², S. Heun², V. Piazza¹, C. Coletti¹

¹ Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy ² Laboratorio NEST – Scuola Normale Superiore, and Istituto Nanoscienze – CNR, Piazza San Silvestro 12, 56127 Pisa, Italy

Graphene on SiC(0001)

- Zerolayer (ZL), monolayer (ML) and bilayer (BL) graphene •Buffer layer of C atoms arranged in a graphene-like honeycomb structure and
- covalently bound to Si atoms.
- •Better graphene thickness control and uniformity.
- •Defined azimuthal orientation with respect to the substrate. •Ordered stacking of layers..

ATOMIC FORCE MICROSCOPY (AFM)

H-etched Si-face

Hydrogen etching removes polishing damages and creates atomically flat terraces

Graphene on SiC(000-1)

- Few layers (FL) graphene
- •Difficult control of the number of layers during growth
- •Different azimuthal orientations.
- •Electronically decoupled graphene layers (turbostatic stacking of graphene layers).
- •Higher mobilities.

ATOMIC FORCE MICROSCOPY (AFM)

H-etched C-face

Half or full unit cell high steps after hydrogen etching cover the surface sample.

Si face epi-ready SiC substrate

10 µm

Epitaxial Graphene growth on Si-face

Tapping mode AFM topography and phase images showing graphene monolayer (lighter contrast) and bilayer (darker contrast) domains.

RAMAN SPECTROSCOPY

2 3 4 μm

1,0 1,5 2,0 2,5

C face polishing scratches on SiC substrate

21 nm

-4 nm

Epitaxial Graphene growth on C-face

- Tapping mode AFM topography of two different regions, showing domains separated by narrow ridges (2-3 nm high), step bunching, and wider terraces.

RAMAN SPECTROSCOPY

μm

0,5

-1.0

SCANNING TUNNELLING MICROSCOPY (STM)

The STM image reveals the typical (6v3x6v3)R30° and the (6x6) superstructures which are indicated by the dashed and the solid diamond, respectively.

ig. from S. **Goler et al**. **Carbon**, 51 249, (**2013**).

The honeycomb lattice signature of graphene is visible on top of the long range superstructure due to the interaction of the ZL with the substrate.

Effect of HF treatment on graphene on C face

• Raman spectra of graphene measured at 532 nm, after the subtraction of the SiC background signal, show G peak at ~1590 cm⁻¹ and 2D peak at \sim 2700 cm⁻¹. • 2D peak fit with one Lorentian, FWHM 34

cm⁻¹.

• 2D/G map shows a high ratio between 0.7 and 2.5 with low values at the terraces edge.

SCANNING TUNNELLING MICROSCOPY (STM)

The absence of the buffer layer on the C face causes a rotational disorder due to stacking faults.

The Moiré patterns visible in (A) and (B) are due to misorientation bewteen the two outermost layers.

The periodicity D of the pattern is given by D=a/[2] $sin(\vartheta/2)$, where *a* is the lattice parameter (*a* is the graphite atomic lattice constant, 0.246 nm) and ϑ is the misorientation angle between the layers. From the measured values of D we derive $\vartheta_A = 4.8^\circ$ and $\vartheta_B = 1.6^\circ$

> There is also an area (C) without Moiré pattern, that probably corresponds to a AB (Bernal) stacking or to small periodicities that are difficult to resolve.

No HF

10- **No HF** 10] **HF** 200 400 600 200 400 600

Energy (eV)

AUGER ELECTRON SPECTROSCOPY (AES)

No HF-treated sample

• >50% corrugated "worm-like" area in the large scale STM.

• on a smaller scale STM reveals a highly corrugated surface, graphene is however continuous and defect free. • O Auger signal visible.

• the LEED pattern lacks of sharpness.

LOW ENERGY ELECTRON DIFFRACTION (LEED)

HF-treated sample

• the surface is flat as revealed by larger and smaller scale STM images. • oxygen completely removed by HF as confirmed by Auger analysis. • typical LEED patter of FL graphene on C-face with diffraction spots indicating several preferred orientations.

Energy (eV)

-10

-15