Correlation between morphology and transport properties of quasi-free-standing monolayer graphene (QFMLG)

Yuya Murata¹, Torge Mashoff², Makoto Takamura³, Shinichi Tanabe³,

Hiroki Hibino³, Fabio Beltram^{1,2}, and Stefan Heun¹

1 NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

2 Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Pisa, Italy

3 NTT Basic Research Laboratories, NTT Corporation, Japan

Introduction

Graphene on silicon carbide (SiC) (0001)

The carrier mobility of QFMLG shows less temperature dependence than EMLG, indicating less interaction between QFMLG and the SiC substrate.

However, the mobility of QFMLG (-3000 cm²V⁻¹s⁻¹) is still lower than exfoliated graphene on SiO₂ or free standing graphene.

F. Speck, J.Jobst, F. Fromm, M. Ostler, D. Waldmann, M. Hundhausen, H. B. Weber, and Th. Seyller, Appl. Phys. Lett. **99**, 122106 (2011)

S. Tanabe, M. Takamura, Y. Harada, H. Kageshima, and H. Hibino, Jpn. J. Appl. Phys. 53, 04EN01 (2014).

The QFMLG mobility depends on T_H , the substrate temperature during H intercalation

highest mobility by $T_H = 700^{\circ}C$

conductivity – carrier density

- linear for T_H = 600-800°C
 charged impurity
- sublinear for $T_H = 950^{\circ}C$
 - additional scattering by defect

Purpose :

to observe the morphology of QFMLG formed at different T_H and investigate the relationship with transport property

sample: 4H or 6H-SiC(0001)

cleaning anneal at 1500°C for 5 min in H_2 of 33 mbar

buffer layer growth

anneal at 1650°C for 5 min in Ar of 800 mbar

H intercalation

anneal at 600 - 1200°C for 1 hour in H₂ of 1 atm

characterization

- STM in ultra-high vacuum (1 × 10⁻¹⁰ mbar)
- AFM in air
- TEM

STM $T_H = 600^{\circ}C$

200 nm

• bright spots

width: 1 nm height: 50 pm small dark spots

width: 1.5 nm depth: 15-25 pm

STM $T_H = 800^{\circ}C$

- width: 1.5 nm
- depth: 15-25 pm
- align along SiC<1120>
- periodicity: 1.8 nm = SiC-6×6
- honeycomb inside

incomplete H intercalation – Si dangling bond at interface

Bright spots

2D Fourier transform

 $\sqrt{3} \times \sqrt{3}$

8 nm

electron scattering at defect

defect of EMLG

Rhim, Appl. Phys. Lett. **100**, 233119 (2012)

N-sputtered EMLG

rise for nano**S**cience and nano**T**echnology

STM $T_{H} = 1000^{\circ}C$

Large dark spots

Wrinkles of graphene

wrinkles appear at $T_H > 800^{\circ}C$

more frequently seen at $T_H > 1100^{\circ}C$

the difference in thermal expansion coefficients between graphene and SiC

Scattering in QFMLG

$T_{\rm H} = 600-800^{\circ}{\rm C}$

small dark spots - Si dangling bonds due to incomplete H intercalation

ARPES – H desorption from QFMLG

S. Forti, K. V. Emtsev, C. Coletti, A. A. Zakharov, C. Riedl, and U. Starke, Phys. Rev. B 84, 125449 (2011).

Si dangling bond donates charge to graphene and acts as a charged scattering center.

Scattering in QFMLG

$T_{\rm H} = 1000^{\circ}{\rm C}$

dark spot – hole in SiC substrate

• wrinkle of graphene

EMLG resistance over SiC steps

Scanning tunneling potentiometry S. Ji, J. B. Hannon, R. M. Tromp, V. Perebeinos, J. Tersoff, and F. M. Ross, Nature Materials 11, 114 (2012)

- π-σ hybridization by curvature
- strain
- reduced doping from substrate

T. Low, V. Perebeinos, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 108, 096601 (2012)

Scattering in QFMLG

The holes in SiC substrate and wrinkles of graphene are responsible for the lower mobility at 1000°C.

As T_H increases from 600-800 to 1000°C,

- small dark spot decreases.
 -more H intercalation
- large dark spot hole in SiC substrate and wrinkles of graphene appear.
- bright spot defect in graphene has the constant density < 0.016%.

Conclusion

- We investigated the morphology of QFMLG formed at several temperatures by H intercalation with STM, AFM, and TEM.
- We found that Si dangling bonds due to incomplete H intercalation at the graphene-substrate interface cause carrier scattering as charged impurities in QFMLG at T_H = 600 and 800°C.
- At T_H = 1000°C, holes in the SiC substrate and wrinkles of graphene appear and decrease the mobility of QFMLG, despite a better H intercalation.
- In order to obtain a higher mobility of QFMLG, we need to optimize the H intercalation condition to intercalate more H, below the temperature at which holes and wrinkles appear.

Thank you for your attention!

Ministero degli Affari Esteri

XPS

The signal from buffer layer was obtained at T = 500C, but not at 650C.

Raman

D peak at 600C, 500C and > 1100C

A buffer layer (SiC(0001)1x1) has 1.22×10^{15} Si atoms cm⁻².

The density of small dark spots is $<1.4 \times 10^{13} \text{ cm}^{-2}$ (~ 1% of Si atoms).