

Nicola Paradiso,¹ <u>Stefan Heun</u>,¹ Stefano Roddaro,¹ Giorgio Biasiol,² Lucia Sorba,¹ Loren N. Pfeiffer,³ Ken W. West,³ and Fabio Beltram¹

- 1. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- 2. Istituto Officina dei Materiali CNR, Laboratorio TASC, Basovizza (TS), Italy
- 3. Dept. of Electrical Engineering, Princeton University, New Jersey 08544, USA

The non-interacting picture of the QH effect

Edge state picture:
current is carried by chiral 1D channels

SGM Group

The non-interacting picture of the QH effect

Edge state picture:
current is carried by chiral 1D channels

With a QPC we can intentionally induce backscattering, which provides us information about the edge properties

Roddaro et al.: PRL **90** (2003) 046805

Roddaro et al.: PRL **93** (2004) 046801

Roddaro et al.: PRL 95 (2005) 156804

Roddaro, Paradiso et al.: PRL **103** (2009) 016802

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

Ji et al.: Nature 422, 415 (2003)

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: internal structure of edge seems to play no role here

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

Ji et al.: Nature 422, 415 (2003)

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: internal structure of edge seems to play no role here

LETTERS

PUBLISHED ONLINE: 25 OCTOBER 2009 | DOI: 10.1038/NPHYS1429

Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime

C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly and F. Pierre*

Nat. Phys. **6**, 34 (2010)

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

Ji et al.: Nature 422, 415 (2003)

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: internal structure of edge seems to play no role here

Role of the inner edge structure?

Roddaro et al.: experiments on QPCs revealed signatures of fractional components in "simple" integer channels

PRL **95**, 156804 (2005)

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

Ji et al.: Nature 422, 415 (2003)

Need for spatially resolved measurements

Non-interacting VS interacting picture

- The self consistent potential due to e-e interactions modifies the edge structure
- •For any realistic potential the density goes smoothly to zero.
- Alternating compressible and incompressible stripes arise at the sample edge

Incompressible stripes:

- The electron density is constant
- The potential has a jump

Compressible stripes:

- The electron density has a jump
- The potential is constant

D. B. Chklovskii *et al.*:

PRB **46** (1992) 4026.

Edge channel tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- Bulk filling factor v=4
- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors $g_1 = g_2 = 0$

Edge channel tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors $g_1 = g_2 = 0$

N. Paradiso et al., Physica E 42 (2010) 1038.

SGM Group

Histogram analysis

Imaging fractional structures in integer channels (v=1)

N. Paradiso *et al.* Phys. Rev. Lett. **108**, 246801 (2012)

Imaging fractional structures in integer channels (v=1)

Imaging fractional structures in integer channels (v=1)

N. Paradiso et al. Phys. Rev. Lett. 108, 246801 (2012)

Temperature dependence of 1/3 peak in histogram

N. Paradiso et al. Phys. Rev. Lett. 108, 246801 (2012)

Fractional edge reconstruction

Fractional edge reconstruction

The IS width values (colored dots) obtained from SGM images compare well with the reconstruction picture predictions (black lines)

Inner edge structure demonstrated and imaged

Quantitative test of the IS width dependence on the density slope

Can we exploit the non-trivial edge structure?

Summary

- Fractional incompressible stripes observed in integer edge channels
- Estimate width of these stripes
- Comparison with edge reconstruction theory

Appendix: the SGM @NEST lab in Pisa

Setup:

- AFM non-optical detection scheme (tuning fork)
- With vibration and noise isolation system
- ³He insert (cold finger base temp. :300 mK)
- 9 T cryomagnet

Pioneering work by:

M. A. Topinka et al.: Science **289** (2000) 2323.

Appendix: tuning fork and sample holder

conductive tip glued on the TF

Appendix: SGM measurements on QPCs

SGM Group

Appendix: SGM measurements on QPCs

Appendix: branched flow and interference fringes

- QPC conductance $G = 6 e^2/h (3^{rd} plateau)$
- Tip voltage $V_{tip} = -5 V$, height $h_{tip} = 10 nm$
- see also M. A. Topinka et al., Nature **410** (2001) 183.

Fringe periodicity: $\lambda_F/2=20$ nm

Appendix

Appendix: Individual histograms

Histograms of the occurrence of each G_T value for all the 9 different SGM scans performed at different V_{tip} values. Fractional peaks are visible in each individual histogram.

Appendix: Determination of the IS width

The incompressible stripe width $\delta_{\rm IS}$ is obtained starting from the FWHM of the corresponding peak in the histogram (left panel). This range of $G_{\rm T}$ values defines a circular stripe in the SGM map (right panel). $\delta_{\rm IS}$ is given by the average width of such a stripe.

Appendix: Determination of the electron density slope

A displacement δr_t of the SGM tip toward the QPC center reduces the QPC width of the same amount. The corresponding reduction of the filling factor at the QPC center (which is measured as a reduction of $G_T = vG_0$) is approximately given by $\delta r_t/2$ times the filling factor slope.

Appendix

