

Nicola Paradiso,¹ <u>Stefan Heun</u>,¹ Stefano Roddaro,¹ Giorgio Biasiol,² Lucia Sorba,¹ Loren N. Pfeiffer,³ Ken W. West,³ and Fabio Beltram¹

- 1. NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- 2. Istituto Officina dei Materiali CNR, Laboratorio TASC, Basovizza (TS), Italy
- 3. Dept. of Electrical Engineering, Princeton University, New Jersey 08544, USA

SGM Group

The non-interacting picture of the QH effect

The non-interacting picture of the QH effect

• Edge state picture: *current is carried by chiral 1D channels*

With a QPC we can intentionally induce backscattering, which provides us information about the edge properties

> Roddaro et al.: PRL **90** (2003) 046805 Roddaro et al.: PRL **93** (2004) 046801 Roddaro et al.: PRL **95** (2005) 156804 Roddaro, Paradiso et al.: PRL **103** (2009) 016802

SGM Group

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

MG2

MG

Ji et al.: Nature 422, 415 (2003)

Preamp

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: internal structure of edge seems to play no role here

а

BS1

An electronic Mach–Zehnder interferometer

M1

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

-1 µm

Non-interacting VS interacting picture

• The self consistent potential due to e-e interactions modifies the edge structure

•For any realistic potential the density goes smoothly to zero.

•Alternating compressible and incompressible stripes arise at the sample edge

Incompressible stripes: •The electron density is constant •The potential has a jump

Compressible stripes: •The electron density has a jump •The potential is constant ←

Edge channel tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- Bulk filling factor v=4
- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors g₁ = g₂ = 0

SGM Group

Edge channel tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- Bulk filling factor v=4
- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors g₁ = g₂ = 0

4.0 e²/h

N. Paradiso et al., Physica E 42 (2010) 1038.

tip position (µm)

SGM Group

Histogram analysis

Imaging fractional structures in integer channels (v=1)

Imaging fractional structures in integer channels (v=1)

SGM Group

anonal emerprise for nanoecience and hano

Imaging fractional structures in integer channels (v=1)

N. Paradiso et al. Phys. Rev. Lett. 108, 246801 (2012)

SGM Group

Temperature dependence of 1/3 peak in histogram

N. Paradiso et al. Phys. Rev. Lett. 108, 246801 (2012)

SGM Group

Fractional edge reconstruction

Fractional edge reconstruction

The IS width values (colored dots) obtained from SGM images compare well with the reconstruction picture predictions (black lines)

- Fractional incompressible stripes observed in integer edge channels
- Estimate width of these stripes
- Comparison with edge reconstruction theory