

Stefan Heun

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

SGM Group

Outline

- Basics of Scanning Gate Microscopy (SGM)
- Quantum Point Contact w/o magnetic field
- QPC in the quantum Hall regime

Outline

- Basics of Scanning Gate Microscopy (SGM)
- Quantum Point Contact w/o magnetic field
- QPC in the quantum Hall regime

Scanning Gate Microscopy

- AFM with conductive tip
- Tip at negatively bias (local gate - locally depletes the 2DEG), no current flows
- SGM performed in constant height mode (10-50 nm above surface), no strain

M. A. Topinka et al.: Science **289** (2000) 2323.

Coherent branched flow of electrons

Branched flow of electrons

No magnetic field (B = 0)
QPC conductance G = 6 e²/h (3rd plateau)
Tip voltage V_{tip} = -5 V, height h_{tip} = 10 nm

Branched flow and interference fringes

N. Paradiso et al., Physica E 42 (2010) 1038.

The SGM @NEST lab in Pisa

Setup:

- AFM non-optical detection scheme (tuning fork)
- With vibration and noise isolation system
- ³He insert (cold finger base temp. :300 mK)
- 9 T cryomagnet

Tuning fork and sample holder

Outline

- Basics of Scanning Gate Microscopy (SGM)
- Quantum Point Contact w/o magnetic field
- QPC in the quantum Hall regime

Conductance quantization in QPCs

In 1D systems the current is carried by a finite number of modes (arising from confined subbands). Each mode contributes two <u>quantum of conductance</u>.

First we fix the mode number (QPC setpoint), then we start scanning the biased tip at a fixed height.

SGM Group

QPC at 3rd plateau

Histogram analysis

0.7 Anomaly

Origin still debated Intrinsic or extrinsic?

- Quantum interference
- Spin polarization
- Kondo effect
- Wigner crystallization

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

0.7 Anomaly

Device A: QPC with localized impurities

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

Device A: QPC with localized impurities

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

Device B: QPC without localized impurities

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

A. lagallo et al., Nano Research, doi: 10.1007/s12274-014-0576-y

SGM Group

Outline

- Basics of Scanning Gate Microscopy (SGM)
- Quantum Point Contact w/o magnetic field
- QPC in the quantum Hall regime

The non-interacting picture of the QH effect

The non-interacting picture of the QH effect

• Edge state picture: *current is carried by chiral 1D channels*

With a QPC we can intentionally induce backscattering, which provides us information about the edge properties

> Roddaro et al.: PRL **90** (2003) 046805 Roddaro et al.: PRL **93** (2004) 046801 Roddaro et al.: PRL **95** (2005) 156804 Roddaro, Paradiso et al.: PRL **103** (2009) 016802

> > National Enterprise for nanoScience and nanoTechnology

SGM Group

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: so far, MZI only work with electron-like excitations. The interference of fractional quasiparticles is inexplicably still elusive

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

MG2

Ji et al.: Nature **422**, 415 (2003)

Preamp

MG1

а

b

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: so far, MZI only work with electron-like excitations. The interference of fractional quasi-particles is inexplicably still elusive

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

M1

-1 µm

BS1

Non-interacting VS interacting picture

• The self consistent potential due to e-e interactions modifies the edge structure

•For any realistic potential the density goes smoothly to zero.

•Alternating compressible and incompressible stripes arise at the sample edge

Incompressible stripes: •The electron density is constant •The potential has a jump

Compressible stripes: •The electron density has a jump •The potential is constant ←

Edge channel tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- Bulk filling factor v=4
- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors g₁ = g₂ = 0

N. Paradiso et al., Physica E 42 (2010) 1038.

tip position (µm)

SGM Group

The Reconstruction Picture suggests that at the edge of a smooth **integer** edge a series of compressible/ **incompressible fractional stripes** can occur.

SGM Group

nonar Enerprise for nanoscience and nano

N. Paradiso et al. Phys. Rev. Lett. 108, 246801 (2012)

SGM Group

Temperature dependence of 1/3 peak in histogram

N. Paradiso et al. Phys. Rev. Lett. 108, 246801 (2012)

SGM Group

Fractional edge reconstruction

The IS width values (colored dots) obtained from SGM images compare well with the reconstruction picture predictions (black lines)

Conclusions

We explore the use of Scanning Gate Microscopy to study onedimensional systems

The 0.7 anomaly is observed irrespective of the presence of localized defects and is therefore a fundamental property

Control of the edge channel trajectory by SGM allows us to study their structure

We observe a fractional substructure in integer QH channels and measured the width of fractional incompressible stripes

SGM Group

Coworkers

N. Paradiso

A. lagallo

S. Roddaro

L. Sorba

F. Beltram

D. Venturelli

F. Taddei

V. Giovannetti

Coworkers

N. Paradiso

A. lagallo

S. Roddaro

L. Sorba

F. Beltram

Materials from:

<u>Laboratorio TASC, Trieste, Italy:</u> Giorgio Biasiol

<u>Princeton University, USA:</u> Loren N. Pfeiffer Ken W. West

<u>ETH Zurich, Switzerland:</u> Christian Reichl Werner Wegscheider

Funding

Ministere degli Affari Esteri e della CooperazioneInternazionale

