Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy

<u>S. Heun</u>, G. Mori, M. Lazzarino, D. Ercolani,* G. Biasiol, and L. Sorba* Laboratorio Nazionale TASC-INFM, Trieste *Università degli Studi di Modena e Reggio Emilia

> A. Locatelli Sincrotrone Trieste, ELETTRA

Location of TASC and Elettra

TASC-INFM National Laboratory

- Tecnologie Avanzate e NanoSCienza (Advanced Technology and Nanoscience)
- Director: Giorgio Rossi
- www.tasc.infm.it

- 99 Researchers (13 Professors, 47 Scientists, 28 PhD students, 11 other)
- 17 Technicians, 9 Administrative staff
- Publications: 2003: 105, 2004: 110, 2005: 85

TASC Laboratories

- AD Analytical Division
- AMD Advanced Material and Devices group
- HAS He Atom Scattering
- IPES Inverse Photoemission laboratory
- MBE Materials Division
- NED Nanoscale Electronic Devices
- OxMBE Oxide MBE
- PLL PhotoLum Laboratory
- SSR Surface Structure and Reactivity Group
- TEM Transmission Electron Microscopy
- XSTM and low-temperature STM of nanostructures

TASC Facilities

- Class 1000 Cleanroom
- Optical Lithography
- Metal deposition
- Dielectric films deposition
- AFM and AFM lithography
- X-Ray Diffraction

TASC Beamlines at Elettra

- ALOISA Advanced Line for Overlayer, Interface and Surface Analysis
- APE Advanced Photoemission Experiment
- BACH Beamline for Advanced diCHroism
- BEAR Bending magnet for Emission Absorption and Reflectivity
- GAPH Gas Phase Photoemission
- LILIT Laboratory for Interdisciplinary Lithography

Beamlines at Elettra

TASC BL @ Elettra: ALOISA APE BACH BEAR GAPH LILIT

Spectromicroscopy: ESCA Microscopy Nanospectroscopy Spectromicroscopy IR Microscopy Microfluorescence TwinMic

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Photoelectron Mean Free Path

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

semicond. nanostructures: self-organized islands (dots)

F. Ratto et al.: Appl. Phys. Lett. 84 (2004) 4526.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- carbon nanotubes

S. Suzuki et al.: Appl. Phys. Lett. 85 (2004) 127.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- carbon nanotubes
- catalysis, chemical waves

A. Locatelli et al.: J. Am. Chem. Soc. 127 (2005) 2351.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- carbon nanotubes
- catalysis, chemical waves
- surface magnetism (XMCD)

A. M. Mulders et al.: Phys. Rev. B 71 (2005) 241422.

The SPELEEM at Elettra

The SPELEEM at ELETTRA

Spectroscopic photoemission and low energy electron microscope

Local Anodic Oxidation (LAO)

Commonly used model:

- Water electrolysis $H_2O \rightarrow H^+ + OH^-$.
- OH⁻ groups (or O⁻) migrate towards the substrate-oxide interface.
- Oxide penetration induced by the intense local electric field (>10⁷ V/cm).

Versatile tool at relatively low cost High lateral resolution but small area

Local Anodic Oxidation (LAO)

The penetration depth is 1.0-1.5 times the oxide height.

LAO on GaAs/AlGaAs

Quantum Point Contact

Setup for Lithography on GaAs

LAO on Silicon

- LAO oxide consists of SiO₂
- Properties similar to those of thermally grown SiO₂

M. Lazzarino.: Appl. Phys. Lett. 81 (2002) 2842.

GaAs LAO-Oxide: Desorption

Height reduction vs. exposure time

- We observe a linear relation between exposure time and height reduction.
- A dependence on other oxidation parameters (bias, writing speed) could not be detected.

Thermal stability

The Knotek-Feibelman mechanism

Valence electrons

Ga or As

Final state

3d

This Auger decay leads to a final state with two vacancies in the valence band weakening the bond between Ga or As and O.

Spectra From GaAs LAO-Oxide

G. Mori et al.: J. Appl. Phys. 97 (2005) 114324.

Chemistry of the GaAs LAO-Oxide

- Photon assisted partial desorption of the AFM-grown oxide was observed.
- The AFM-oxide is mainly composed of Ga₂O, with a small fraction of Ga₂O₃ and As-oxides.
- The shape of the Ga peak does not change with exposure time (early stage of desorption), however, Ga-oxides do desorb.
- All As-oxides desorb completely. No As-oxides detected after some hours of exposure.
- The As-oxides are located only at the surface.
- Evidence for the presence of unoxidized GaAs in the LAO-oxide.
- Chemical composition does not depend on writing bias.

G. Mori et al.: J. Appl. Phys. 97 (2005) 114324.

The microscopical dynamics of LAO

LAO on III-V Heterostructures

Chemical composition of LAO oxide

- Aluminium observed at the surface of the LAO oxide
- No AI in the regions not oxidized with LAO
- The other oxide lines do not show remarkable differences between the relative concentration of the components in each core level.

G. Mori et al.: submitted to Nucl. Instr. and Meth. B

The effect of X-ray exposure

- The X-ray exposure is removing the Ga oxides faster than the AI ones resulting in a surface enrichment with AI.
- The Al oxides are more stable to X-ray exposure than Ga oxides
 G. Mori et al.: submitted to Nucl. Instr. and Meth. B

The effect of X-ray exposure

Al atoms

$$N_{Ga}(t) = N_{Ga}^{0} \cdot e^{-\frac{t}{\tau_{Ga}}}$$

 $N^0_{\mbox{ Ga}}$ is the number Ga atoms at the surface before exposure $\tau_{\mbox{ Ga}}$ is the probability that a Ga atom is desorbed and is replaced by an underlying Al atom.

Assuming that the Ga atoms desorbs much faster that the Al ones

$$N_{Al}(t) \cong N_{Al}^{0} + N_{Ga}^{0} \cdot \left(1 - e^{-\frac{t}{\tau_{Ga}}}\right)$$

With this simple model we can calculate R(Al/Ga) for any exposure time.

G. Mori et al.: submitted to Nucl. Instr. and Meth. B

The effect of X-ray exposure

- Initially: R(Al/Ga)=0.34±0.10
- $\tau_{Ga} = 560 \pm 60 \text{ min}$
- We are able to quantify the effect of X-ray exposure on the surface chemical composition of the LAO oxide.

Shallow Oxidations

Variation in AlAs layer thickness

- 2 nm AlAs
- Oxide height 9.0 ± 1.0 nm

- 5 nm AlAs
- Oxide height 8.9 ± 0.9 nm

Refined Model

- Diffusion of oxygen-rich ions <u>plus</u> substrate ions
- Homogeneous mixing of components
- Ratio AI / Ga:

Comparison with Experiment

Summary

- Investigation of chemical properties of LAO nanostructures on epitaxial GaAs/AIAs/GaAs layers.
- Presence of Al-oxides in the surface layers of the LAO nanostructures detected.
- Classical model of LAO process has to be revised.
- More general model is proposed which includes the diffusion of ionized substrate atoms to the surface.
- Good agreement between model and experiment is observed.