Nanostructured Materials for Device Applications

Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Motivation

Semiconductor Technology: Moore's Law (Similar trend for magnetic storage devices)

- Continuous miniaturization
- Increasing complexity

Nature 406 (2000) 118.

Motivation

- Semiconductor Technology: Moore's Law (Similar trend for magnetic storage devices)
 - Continuous miniaturization
 - Increasing complexity
- Need for Analytical Tools with Access to
 - Chemical composition
 - Electronic and magnetic properties
- Lateral Resolution ~ 100 nm
- Delivered by X-ray Spectroscopy (XPS) in combination with X-ray Microscopy (PEEM)

The SPELEEM at ELETTRA

- Best energy resolution:
 250 meV
- Best lateral resolution:
 25 nm
- Variable polarization
- 20 1000 eV
- □ Photon flux 10¹³ ph/s
- Small spot (2μm x 25 μm)

The SPELEEM instrument

Spectroscopic Photo-Emission and Low Energy Electron Microscope

Model Material Systems

- Semiconductor Quantum Dots (InAs/GaAs, Ge/Si), obtained by self-assembly during MBE growth
- Mesoscopic Devices fabricated by Local Anodic Oxidation Nanolithography with an Atomic Force Microscope
- Suspended individual Single Wall Carbon Nanotubes connecting Si nanostructures

Model Material Systems

- Semiconductor Quantum Dots (InAs/GaAs, Ge/Si), obtained by self-assembly during MBE growth
- Mesoscopic Devices fabricated by Local Anodic Oxidation Nanolithography with an Atomic Force Microscope
- Suspended individual Single Wall Carbon Nanotubes connecting Si nanostructures

InAs/GaAs Quantum Dots

AMD Group @ TASC

- Giorgio Biasiol
- Giovanni Golinelli
- Lucia Sorba
- Nanospectroscopy Beamline @ Elettra
 - Andrea Locatelli
 - Tevfik Onur Mentes
 - Fangzhun Guo (Spring-8)

Motivation

- Quantum Dot Applications based on their particular electronic properties
- Strain-driven self-assembly (SK-growth)
- Model systems: InAs/GaAs, Ge/Si
- Composition (gradients) within the dot influence energy levels:
 - Intermixing, alloying
 - Shift emission wavelength
 - Introduce anisotropies

InAs/GaAs Islands (LEEM)

- Electron MicroscopyLEEM
- 5 µm FOV

"Integral" Core Level Spectra

- **D** Spectra taken from a 1 μ m x 1 μ m sample area.
- III-V stoichiometry after decapping confirmed.

XPEEM Core Level Imaging

Island Size in XPEEM

Island Size in XPEEM

XPEEM Local Spectra

Integration area 25 nm x 25 nm, energy resolution \approx 1 eV

Core Level Line Profile Analysis

Spectrum from Wetting Layer, Shirley Background subtracted Gauss 1 eV, Lor 0.16 eV, BR 1.5, SO: Ga 3d 0.45 eV, In 4d 0.85 eV

2D Fit of XPEEM Data

In 4d peak area Min: 220, Max: 520 Ga 3d peak area Min: 270, Max: 470 In surface concentration Min: 0.7, Max: 0.86

Photoionization cross sections: In 4d: 2.2, Ga 3d: 8.5 In surface concentration = In 4d / (In 4d + Ga 3d)

Indium Surface Concentration Map

Model Material Systems

- Semiconductor Quantum Dots (InAs/GaAs, Ge/Si), obtained by self-assembly during MBE growth
- Mesoscopic Devices fabricated by Local Anodic Oxidation Nanolithography with an Atomic Force Microscope
- Suspended individual Single Wall Carbon Nanotubes connecting Si nanostructures

Local Anodic Oxidation on GaAs

AMD Group @ TASC

- Giorgio Mori
- Marco Lazzarino
- Daniele Ercolani
- Giorgio Biasiol
- Lucia Sorba

Nanospectroscopy Beamline @ Elettra

Andrea Locatelli

Local Anodic Oxidation (LAO)

Common model:

- □ Water electrolysis $H_2O \rightarrow H^+ + OH^-$.
- OH⁻ groups (or O⁻) migrate towards the substrate-oxide interface.
- Oxide penetration induced by the intense local electric field (>10⁷ V/cm).

Versatile tool at relatively low cost High lateral resolution but small area

Local Anodic Oxidation (LAO)

The penetration depth is 1.0-1.5 times the oxide height

LAO on GaAs/AlGaAs

Quantum Point Contact

The dynamics of the LAO process

LAO on III-V Heterostructures

Chemical composition of LAO oxide

- Aluminium observed at the surface of the LAO oxide
- No AI in the regions not oxidized with LAO
- Time-resolved study: Ga-oxides desorb under x-rays (much faster than Al-oxides)

G. Mori et al.: Nucl. Instr. and Meth. B, in press.

The effect of X-ray exposure

G. Mori et al.: Nucl. Instr. and Meth. B, in press.

Shallow Oxidations

Al content depends strongly on oxide height

Variation in AlAs layer thickness

- 2 nm AlAs
- Oxide height 9.0 ± 1.0 nm

- 5 nm AlAs
- Oxide height 8.9 ± 0.9 nm

Refined Model

- Diffusion of oxygen-rich ions plus substrate ions
- Homogeneous mixing of components
- Ratio AI / Ga:
 - 0 for h < d_{GaAs}
 - $(h d_{GaAs}) / d_{GaAs}$ for $d_{GaAs} < h < d_{GaAs} + d_{AIAs}$
 - $d_{AIAs} / (h d_{AIAs})$ for h > $d_{GaAs} + d_{AIAs}$

Comparison with Experiment

Model Material Systems

- Semiconductor Quantum Dots (InAs/GaAs, Ge/Si), obtained by self-assembly during MBE growth
- Mesoscopic Devices fabricated by Local Anodic Oxidation Nanolithography with an Atomic Force Microscope
- Suspended individual Single Wall Carbon Nanotubes connecting Si nanostructures

Suspended Carbon Nanotubes

NTT Basic Research Laboratories

- Satoru Suzuki
- Yoshio Watanabe
- Yoshikazu Homma
- Shin-ya Fukuba

Nanospectroscopy Beamline @ Elettra

Andrea Locatelli

Motivation

Carbon Nanotube Applications:

- Field effect transistor
- Field emission displays
- Interconnects

APL **75** (1999) 3129 Adv. Mat. **12** (2000) 890

Work function and electronic properties of these CNT close to the Fermi energy are important

Samples for SPELEEM studies

Si line pattern, pitch 1 µm, height 500 nm
 SWNT grown by CVD at 900°C (Fe catalyst)
 SWNT diameter 1-3 nm

LEEM

S. Suzuki et al.: Appl. Phys. Lett. 85 (2004) 127.

C 1s core level image

C 1s core level spectra

No band bending along tube axis
Depletion width < 40 nm

S. Suzuki et al.: J. Electron Spectrosc. Relat. Phenom. **144-147** (2005) 357.

CNT work function

S. Suzuki et al.: Appl. Phys. Lett. 85 (2004) 127.

Secondary electron PEEM images

Conclusions

X-ray microscopy in combination with x-ray spectroscopy provides information on:

- Elemental composition
- Sample chemistry
- Electronic properties
- Magnetic properties
- Today's x-ray spectromicroscopes offer
 - Some ten nanometer lateral resolution
 - Sufficient energy resolution (some 100 meV)
- Ideal tools for analysis of nanostructures