Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM

S. Heun, G. Mori, M. Lazzarino, D. Ercolani, G. Biasiol, and L. Sorba Laboratorio TASC-INFM, 34012 Basovizza, Trieste

A. Locatelli Sincrotrone Trieste, ELETTRA, 34012 Basovizza, Trieste

Outline

- A brief introduction to spectromicroscopy
 - The spectroscopic photoemission and low energy electron microscope (SPELEEM)
- Local Anodic Oxidation (LAO) of GaAs

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

semicond. nanostructures: self-organized islands (dots)

F. Ratto et al.: Appl. Phys. Lett. 84 (2004) 4526.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- surface faceting (wires)

F.-J. Meyer zu Heringdorf et al.: Phys. Rev. Lett. 86 (2001) 5088.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- surface faceting (wires)
- carbon nanotubes

S. Suzuki et al.: Appl. Phys. Lett. 85 (2004) 127.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- surface faceting (wires)
- carbon nanotubes
- catalysis, chemical waves

A. Locatelli et al.: J. Am. Chem. Soc., in press.

Why XPS?

- chemical state information
- surface sensitive
- ease of quantification
- (in general) nondestructive

Why spectromicroscopy ?

- semicond. nanostructures: self-organized islands (dots)
- surface faceting (wires)
- carbon nanotubes
- catalysis, chemical waves
- surface magnetism (XMCD)

A. M. Mulders et al.: Phys. Rev. B, submitted.

Spectromicroscopy at Elettra

1: Spectromicroscopy

- 2: ESCA Microscopy
- 3: Nanospectroscopy
- 4: TwinMic
- 5: Microfluorescence
- 6: IR Microscopy

Scanning vs. direct imaging type

Photon optics is demagnifying the beam: **Scanning Instrument**

- Whole power of XPS in a small spot mode
- Flexibility for adding different detectors
- Rough surfaces can be measured
- Limited use for fast dynamic processes
- Lower lateral resolution than imaging instruments

Electron optics to magnify irradiated area:

Imaging Instrument

- High lateral resolution (20 nm)
- Multi-method instrument (XPEEM/PED)
- Excellent for monitoring dynamic processes
- Poorer spectroscopic ability
- Sensitive to rough surfaces

The SPELEEM

The SPELEEM at ELETTRA

The Energy Filter

XPEEM: Spectroscopic Microscopy

- Images from a Field Effect Transistor (FET) at different binding energies.
- Photon energy 131.3 eV.

Sample from M. Lazzarino, L. Sorba, and F. Beltram

XPEEM: Core Level Spectroscopy

Pb/W(110), Pb 5d core level, hv = 80 eV

Best energy resolution: 250 meV

Imaging of Dispersive Plane

Lateral resolution in LEEM mode

Pb/W(110), E = 11 eV

Lateral resolution: 10 nm

Lateral resolution in XPEEM mode

Outline

- A brief introduction to spectromicroscopy
 - The spectroscopic photoemission and low energy electron microscope (SPELEEM)
- Local Anodic Oxidation (LAO) of GaAs

M. Lazzarino, S. Heun, B. Ressel, K. C. Prince, P. Pingue, and C. Ascoli: Appl. Phys. Lett. 81 (2002) 2842.

Local Anodic Oxidation (LAO)

Commonly accepted model:

- Water electrolysis $H_2O \rightarrow H^+ + OH^-$.
- OH⁻ groups (or O⁻) migrate towards the substrate-oxide interface.
- Oxide penetration induced by the intense local electric field (>10⁷ V/cm).

Versatile tool at relatively low cost High lateral resolution but small area

Local Anodic Oxidation (LAO)

The penetration depth is 1.0-1.5 times the oxide height.

LAO on GaAs/AlGaAs

Devices made with LAO

K. Matsumoto *et al.*, APL **68** (1996) 34.

G. Mori *et al.*, JVB **22** (2004) 570.

A. Fuhrer *et al*., Nature **413** (2001) 822.

R. Held *et al.*, APL **73** (1998) 262.

Setup for Lithography on GaAs

Thermomicroscope Microcope CP-Resource

water bottle

GaAs LAO-Oxide: Desorption

D. Ercolani et al.: Adv. Funct. Mater., in press.

Height reduction vs. exposure time

- We observe a linear relation between exposure time and height reduction.
- A dependence on other oxidation parameters (bias, writing speed) could not be detected.

D. Ercolani et al.: Adv. Funct. Mater., in press.

The Knotek-Feibelman mechanism

Valence electrons

Ga or As

Final state

3d

This Auger decay leads to a final state with two vacancies in the valence band weakening the bond between Ga or As and O.

D. Ercolani et al.: Adv. Funct. Mater., in press.

Spectra From GaAs LAO-Oxide

Time resolved spectroscopy with SPELEEM using Dispersive Plane (hv = 130 eV)

- Sample S03B
- Hole (3,2)
- Writing voltage 15 V
- Structure height 3 nm
- Image taken with secondary electrons:
 - Photon energy: 130 eV
 - Kinetic energy: 0.3 eV
 - Field of view: 10 μm

G. Mori et al.: J. Appl. Phys., submitted.

DP-Spectra From GaAs LAO-Oxide

- Ga 3d remains unchanged, As-oxides signal disappeares with time.
- Ga-oxides mainly Ga₂O with small contribution of Ga₂O₃.

G. Mori et al.: J. Appl. Phys., submitted.

Chemistry of the GaAs LAO-Oxide

- Photon assisted partial desorption of the AFM-grown oxide was observed.
- The AFM-oxide is mainly composed of Ga₂O, with a small fraction of Ga₂O₃ and As-oxides.
- The shape of the Ga peak does not change with exposure time (early stage of desorption), however, Ga-oxides desorb.
- All As-oxides desorb completely. No As-oxides detected after some hours of exposure.
- The As-oxides are located only at the surface.
- Evidence for the presence of unoxidized GaAs in the LAO-oxide.
- Chemical composition does not depend on writing bias.

G. Mori et al.: J. Appl. Phys., submitted.

Sample I

AFM-LAO on Sample I

XPEEM Core Level Spectra

- Aluminium observed at the surface of the LAO oxide
- Unoxidized regions: No AI 2p signal
- Main component: Al₂O
- No chemical difference between different bias

Shallow Oxidations

Variation in Marker Thickness

Refined Model

- Diffusion of oxygen-rich ions <u>plus</u> substrate ions
- Homogeneous mixing of components
- Ratio AI / Ga:
 - 0 for h < d_{GaAs}
 - (h d_{GaAs}) / d_{GaAs} for d_{GaAs} < h < d_{GaAs} + d_{AIAs}
 - $d_{AIAs} / (h d_{AIAs})$ for $h > d_{GaAs} + d_{AIAs}$
- Surface and interface roughness have to be considered!

Comparison to Experiment

Summary

- Presence of Al-oxides in the topmost layers of GaAs/AlAs/GaAs heterostructures detected.
- Classical model of LAO process has to be revised.
- Alternative model includes diffusion of ionized substrate atoms to the surface.
- Good agreement between model and experiment.
- Al diffusion might be faster than Ga diffusion.