# Applications of Spectromicroscopy at ELETTRA

S. Heun Sincrotrone Trieste

### Outline



- Introduction
- Some applications:
  - Electronic Structure at Carbon Nanotube Tips
  - Nanoscopic Pattern Formation
  - Spectroscopy from Individual Nanocrystals
- New Nanospectroscopy Beamline at Elettra

### Coworkers



• NTT Basic Research Labs: Y. Watanabe, D. Bottomley, S. Suzuki, T. Kiyokura, K. G. Nath, T. Ogino

- Bell Labs: W. Zhu
- University of North Carolina: C. Bower, O. Zhou
- Universität Hannover: F.-J. Meyer zu Heringdorf, R. Hild, P. Zahl, M Horn-von Hoegen

• ELETTRA: D. Cocco, M. Marsi, M. Kiskinova, K. C. Prince, Th. Schmidt, E. Bauer, B. Ressel, L. Gregoratti, A. Barinov, B. Kaulich, A. Locatelli, M. Pasqualetto

# **Motivation**





#### Why spectro-microscopy ?

- (semiconductor) nanostructures
  - lithography
  - self-organization
- devices
- laterally inhomogeneous surfaces
- segregation at defects
- alloying (silicide formation)
- 2-compound growth on surfaces
- ...

# Approaches to SR-XPS-microscopy







Photon optics is demagnifying the beam:

#### scanning instrument

- 1. Whole power of XPS in a small spot spectroscopy mode.
- 2. Flexibility for adding different detectors.
- 3. Limited use for fast dynamic processes.
- 4. Lower resolution than imaging instruments.

Electron optics to magnify irradiated area: imaging instrument

- 1. High lateral resolution (20 nm).
- 2. Multi-method instrument (XPEEM/PED).
- 3. Excellent for monitoring dynamic processes.
- 4. More difficult to operate.
- 5. Sensitive to rough surfaces.

### Outline



- Introduction
- Some applications:
  - Electronic Structure at Carbon Nanotube Tips
  - Nanoscopic Pattern Formation
  - Spectroscopy from Individual Nanocrystals
- New Nanospectroscopy Beamline at Elettra



M. Marsi, L. Casalis, L. Gragoratti, S. Günther, A. Kolmakov, J. Kovac, D. Lonza, and M. Kiskinova, J. Electron Spect. 84 (1997) 73.

# **Carbon Nanotubes**



- highly one-dimensional structure
- specific electronic structure expected at tips, where graphene cylinders are semi-spherically closed
- application as field emitters

Suzuki et al, APL 76 (2000) 4007: work function changes after Csdeposition



# **Sample Preparation**



Bower et al, APL 77 (2000) 830: Multi-walled carbon nanotubes aligned perpendicular to Si substrate grown by CVD method length: 10 µm, diameter: 30 nm



# **Integral PES**

LABORATORIO ELEINE

PES: electronic structure (work function, VB, core levels)

NTT: smaller work function at tip larger density of states at  $E_F$  slight band bending

Two different kinds of samples: (a) aligned (b) unaligned







S. Suzuki, Y. Watanabe, T. Kiyokura, K. G. Nath, T. Ogino, S. Heun, W. Zhu, C. Bower, and O. Zhou: PRB 63 (2001) 245418.

# **Results at ELETTRA**



Experiment: Laterally resolved PES on nanotube side and tip in cross-section (core levels, VB, work function)

**Results:** 

- At tips larger density of states near Fermi-Edge
- Cs concentration along the tube axis



S. Suzuki, Y. Watanabe, S. Heun, L. Gregoratti, A. Barinov, B. Kaulich, C. Bower, O. Zhou, W. Zhu, T. Ogino, M. Kiskinova: Elettra News 40 (2001).

### Outline



- Introduction
- Some applications:
  - Electronic Structure at Carbon Nanotube Tips
  - Nanoscopic Pattern Formation
  - Spectroscopy from Individual Nanocrystals
- New Nanospectroscopy Beamline at Elettra

# The SPELEEM at ELETTRA

#### Spectroscopic photoemission and low energy electron microscope RATORIO E sample lateral resolution: 22nm x-ray beam energy resolution < 0.5 eVobjective illumination selected area aperture aperture contrast aperture screen electron gun slit projector transfer condensor field lenses intermed

CROTRONA S

analyzer

S. Heun, Th. Schmidt, B. Ressel, E. Bauer, and K. C. Prince, Synchrotron Radiation News Vol. 12, No. 5 (1999) 25.

lenses

sector field

# Introduction



- Decreasing structure size in semiconductor technology
- Fabrication of ordered arrays of nanowires (transport properties)
- Use faceted semiconductor surface as template
- Important: understanding of key paramaters such as
  - width, length, height of step bunches
  - staightness and regularity of arrangement of bunches
- Here: Au-induced faceting of 4° vicinal Si(001)



#### LEEM Movie using bright field imaging condition http://www.elettra.trieste.it (FoV: 12 µm)

F.-J. Meyer zu Heringdorf, R. Hild, P. Zahl, Th. Schmidt, S. Heun, B. Ressel, E. Bauer, M. Horn-von Hoegen: Elettra News 36 (1999).

#### Au induced faceting of vicinal Si(001)

LEEM images during Au deposition at 850°C:



SCROTRON.

F.-J. Meyer zu Heringdorf, R. Hild, P. Zahl, Th. Schmidt, B. Ressel, S. Heun, E. Bauer, M. Horn von Hoegen: Surf. Sci. 480 (2001) 103.







#### XPEEM Movie on the Au 4f<sub>7/2</sub> core level emission <u>http://www.elettra.trieste.it</u> (FoV: 12 μm)



F.-J. Meyer zu Heringdorf, R. Hild, P. Zahl, Th. Schmidt, S. Heun, B. Ressel, E. Bauer, M. Horn-von Hoegen: Elettra News 36 (1999).



F.-J. Meyer zu Heringdorf, R. Hild, P. Zahl, Th. Schmidt, S. Heun, B. Ressel, E. Bauer, M. Horn-von Hoegen: Elettra News 36 (1999).



F.-J. Meyer zu Heringdorf, Th. Schmidt, S. Heun, R. Hild, P. Zahl, B. Ressel, E. Bauer, M. Horn-von Hoegen: PRL 86 (2001) 5088.



F.-J. Meyer zu Heringdorf, Th. Schmidt, S. Heun, R. Hild, P. Zahl, B. Ressel, E. Bauer, M. Horn-von Hoegen: PRL 86 (2001) 5088.

### Local Au coverage vs. time



t<sub>0</sub>: shutter open.

CROTRON,

ORATORIO E

- t<sub>2</sub>: terrace forms, Au coverage in
- Box A doubles,
- Box B decreases.

t<sub>1</sub>: confirms this model.

F.-J. Meyer zu Heringdorf, Th. Schmidt, S. Heun, R. Hild, P. Zahl, B. Ressel, E. Bauer, M. Horn-von Hoegen: PRL 86 (2001) 5088.

# Growth of metallic nanowires



#### Deposition under glancing angle:



4μm (d)

Ex-situ Au deposition, SEM image (Meyer zu Heringdorf, Ph.D. thesis, 1999) In-situ Pb deposition, annealing at 260°C, LEEM study (Jalochowski and Bauer, Surf. Sci. **480** (2001) 109.)

# Conclusions



- Local variation of Au coverage has been determined quantitatively and time resolved.
- Phase separation of Au coverage.
- Terraces collect Au atoms from the neighborhood,

suppressing the formation of other terraces in a given area.

• Demonstration of metallic nanowire growth on this surface



### Outline



- Introduction
- Some applications:
  - Electronic Structure at Carbon Nanotube Tips
  - Nanoscopic Pattern Formation
  - Spectroscopy from Individual Nanocrystals
- New Nanospectroscopy Beamline at Elettra

# InAs Nanocrystals on Se / GaAs

Nanocrystals formed during strained-layer epitaxy

- Quasi zero-dimensional nature (quantum dots)
- Semiconductor lasers and memory applications
- No lithography: cost-effective fabrication of devices

Problems:

- Size fluctuations: need for nano-scale spectroscopy
- Segregation and interdiffusion observed for Ge/Si and for InAs/GaAs

Purpose of this work:

- Determination of the elemental composition of the nanocrystals
- Photoelectron spectroscopy with high lateral resolution
- Electronic structure of a single InAs nanocrystal



#### AFM





InAs / Se / GaAs after capping and decapping.

Typical island size: 50 nm. Typical island height: 20 nm. Typical island density: 25 µm<sup>-2</sup>

Y. Watanabe, S. Heun, Th. Schmidt, and K. C. Prince: Jpn. J. Appl. Phys. 38, Suppl. 38-1 (1999) 556-559.





nanocrystals have square base oriented along <110>

CROTRONE



 $hv = 52 eV, FoV = 2\mu m$ 

nanocrystal height from their shadow length: 22 nm

#### Laterally resolved core level spectroscopy





Indium on substrate ↑ SK growth mode Gallium on nanocrystals

### **XPEEM**



$$hv = 121 \text{ eV}, E_b = 54.7 \text{ eV}, FoV = 2\mu m$$



CROTRONE NS

Selenium on the nanocrystals

Valence band and work function data: Further evidence for the presence of Selenium at the surface of the nanocrystals

# Conclusions



- During heteroepitaxy, the InAs reacts with the  $Ga_2Se_3$ .
- Phase separation on anion sublattice, alloying on cation sublattice.
- A wetting layer of  $\ln_x Ga_{1-x}$  As is formed covered by  $(\ln_y Ga_{1-y})_2 Se_3$ .
- $(In_yGa_{1-y})_2Se_3$  covered nanocrystals are formed on this surface.

$$(\ln_y Ga_{1-y})_2 Se_3$$
  
 $\ln_x Ga_{1-x} As$ 

# Summary





#### ESCA microscope:

- Easy to use
- Cross section possible
- 100 nm lateral resolution
- 300 meV energy resolution

#### **SPELEEM:**

- Multi-method instrument
- structural information
- chemical information
- 20 nm lateral resolution
- 500 meV energy resolution

### Outline



- Introduction
- Some applications:
  - Electronic Structure at Carbon Nanotube Tips
  - Nanoscopic Pattern Formation
  - Spectroscopy from Individual Nanocrystals
- New Nanospectroscopy Beamline at Elettra



D. Cocco, M. Marsi, M. Kiskinova, K. C. Prince, T. Schmidt, S. Heun, and E. Bauer: Proc. SPIE 3767 (1999) 271.

# The Nanospectroscopy Beamline





# The SPELEEM at ELETTRA





#### Nanospectroscopy beamline characteristics



**Source:** Apple II type undulator, 10 cm periods elliptical and linear polarization 240 µm x 40 µm source dimension

**Monochromator:** 20 - 1000 eV (2 VLS plane gratings)  $E/\Delta E > 4000$ 





High photon flux density (10<sup>12</sup>-10<sup>14</sup> ph/sec) Spot as small as possible (10 µm<sup>2</sup>) Constant divergence Variable photon density Uniform photon distribution

D. Cocco, M. Marsi, M. Kiskinova, K. C. Prince, T. Schmidt, S. Heun, and E. Bauer: Proc. SPIE 3767 (1999) 271.