The Nanospectroscopy Beamline at ELETTRA

<u>S. Heun</u> Sincrotrone Trieste

A. Locatelli, S. Cherifi, M. Marsi, and M. Pasqualetto Nanospectroscopy Group, Sincrotrone Trieste

> A. Bianco, G. Sostero, D. Cocco X-ray Optics Group, Sincrotrone Trieste

> > E. Bauer Arizona State University

Motivation

Why spectro-microscopy ?

- (semiconductor) nanostructures
 - lithography
 - self-organization
- devices
- laterally inhomogeneous surfaces
- segregation at defects
- alloying (silicide formation)
- 2-compound growth on surfaces
- XMCD with lateral resolution

Outline

1. Spectromicroscopy at Elettra

2. The SPELEEM microscope

- 3. The Nanospectroscopy Beamline
- 4. First Results: MnAs on GaAs

Outline

1. Spectromicroscopy at Elettra

2. The SPELEEM microscope

3. The Nanospectroscopy Beamline

4. First Results: MnAs on GaAs

Location of Elettra

Elettra Beamlines

exit	beamline	source
1.2L	Nanospectroscopy *	id
1.2R	FEL (Free-Electron Laser)	-
2.2L	ESCA Microscopy	id
2.2R	SuperESCA	id
3.2L	Spectro Microscopy	id
3.2R	VUV Photoemission	id
4.2	Circularly Polarised Light	id
5.2L	SAXS (Small Angle X-Ray Scattering)	id
5.2R	XRD1 (X-ray Diffraction)	id
5.1L	Material science	bm
5.1R	SYRMEP (SYnchrotron Radiation for MEdical Physics)	bm
5.2R	Gas Phase	id
7.1	MCX (Powder Diffraction Beamline)	bm
7.2	ALOISA (Advanced Line for Overlayer, Interface and Surface Analysis)	id
3.1L	BEAR (Bending magnet for Emission Absorption and Reflectivity) *	bm
3.1R	LILIT (Lab of Interdisciplinary LIThography)	bm
3.2	BACH (Beamline for Advanced DiCHroism) *	id
9.1	IRSR (Infrared Synchrotron Radiaton Microscopy)	bm
9.2	APE (Advanced Photoelectric-effect Experiments) **	id
10.1L	X-ray microfluorescence	bm
10.1R	DXRL (Deep-etch Lithography)	bm
10.2	IUVS (Inelastic Ultra Violet Scattering)	id
11.1	XAFS (X-ray Absorption Fine Structure)	bm
11.2	XRD2 (X-ray Diffraction)	id

Operating Beamlines

U2.2 EscaMicroscopy

U3.2 SpectroMicroscopy

U1.1 Nanospectrocopy

	<u>EM</u>	<u>SM</u>	<u>NS</u>
E (eV):	400-750	20-110	40-1000
SR (nm):	90	500	40 (20)
SR (eV):	0.25	0.07	0.4 (0.25)
Flux (ph/s):	10⁹-10 ¹⁰		10¹¹-10 ¹³
Methods:	XPS(XAS)	XPS	XPS-XAS
Polarization:	: Linear		Linear&circular

Photoemission Microscopy

Photon optics is demagnifying the beam: **Scanning Instrument**

- 1. Whole power of XPS in a small spot mode.
- 2. Flexibility for adding different detectors.
- 3. Rough surfaces can be measured.
- 4. Limited use for fast dynamic processes.
- 5. Lower resolution than imaging instruments.

Electron optics to magnify irradiated area:

Imaging Instrument

- 1. High lateral resolution (20 nm).
- 2. Multi-method instrument (XPEEM/PED).
- 3. Excellent for monitoring dynamic processes.
- 4. Poorer spectroscopic ability.
- 5. Sensitive to rough surfaces.

Concepts of Spectromicroscopy

XPS – mode: <u>hv=const</u> hv in / e⁻ out + energy filtering of electrons

XAS – mode: <u>hv scanned</u> hv in / e⁻ out (TEY)

XANES: tuning on molecular orbitals

XMLD: imaging antiferromagnets

XMCD: imaging ferromagnets

Sum rules: Magnetic moment values

XMCD - PEEM

Characteristics

- Elemental resolution
- Lateral resolution
- Magnetic domain imaging
- Magnetic moment values

XMCD-PEEM

Outline

1. Spectromicroscopy at Elettra

2. The SPELEEM microscope

3. The Nanospectroscopy Beamline

4. First Results: MnAs on GaAs

The SPELEEM at ELETTRA

The SPELEEM

Spectroscopic photoemission and low energy electron microscope

Spectroscopic Microscopy

Sample from M. Lazzarino, L. Sorba, and F. Beltram, Laboratorio TASC-INFM, Trieste, Italy

S. Heun, Th. Schmidt, B. Ressel, E. Bauer, and K. C. Prince, Sync. Rad. News Vol. 12, No. 5 (1999) 25.

XPEEM

S. Heun, Th. Schmidt, B. Ressel, E. Bauer, and K. C. Prince, Sync. Rad. News Vol. 12, No. 5 (1999) 25.

Lateral Resolution of LEEM

FoV = $2.65 \mu m$ STV = 7.5 eV12.5 μm energy slit 30 μm contrast aperture 100 ms int. time, 2x2 binning

Pb on Si (111) LEEM – lateral resolution 13/11/2002 image_003

Profile line width = 3 pixels

Spatial resolution is 15 nm.

Lateral Resolution of XPEEM

FoV = 2.65 μ m STV = 1.2 eV, hv = 54.5 eV 12.5 μ m energy slit 20 μ m contrast aperture 15 s int. time, 2x2 binning

Pb on Si (111) XPEEM – lateral resolution imaging secondaries 12/11/2002 image_025

Lateral Resolution of XPEEM

FoV = 2.65 μ m STV = 43.2 eV, hv = 144.0 eV 12.5 μ m energy slit 30 μ m contrast aperture 240 s int. time, 2x2 binning

Pb on Si (111) XPEEM – lateral resolution core level imaging – Si 2p 12/11/2002 image_033

Profile line width = 7 pixels 400 380 360 dx = 9.2 pixels Counts 340 320 300 280 40 60 80 100 Pixels Spatial resolution is **55 nm**.

Pb on Si (111) XPEEM – energy resolution Pb 5d – Voigt fit 13/11/2002 scan_002

FoV = 2.65 µm hv = 130.0 eV 12.5 µm energy slit 30 µm contrast aperture 30 s int. time, 4x4 binning

Energy resolution better than **0.45 eV**.

Outline

1. Spectromicroscopy at Elettra

2. The SPELEEM microscope

3. The Nanospectroscopy Beamline

4. First Results: MnAs on GaAs

Source:	Variable Polarization

Monochromator:Wide spectral rangeMedium spectral resolution

Spot:High photon flux density on sampleSmall variable spot size (~µm)Homogeneous illumination

Beamline Layout

Source Characteristics

- FEL/Nanospectroscopy undulator
- Sasaki Apple II type undulator
- 2 sections with phase modulation electromagnet
- 2 x 20 periods of length 10 cm
- Polarization: elliptical (horizontal, circular, and vertical)
- Source dim.: 560 μm x 50 μm

Optics

D. Cocco, M. Marsi, M. Kiskinova, K. C. Prince, T. Schmidt, S. Heun, and E. Bauer: Proc. SPIE 3767 (1999) 271.

Front End

Monochromator

Refocusing Mirrors

SPELEEM

2nd Branch

- 2 VLS (variable line spacing) gratings of low groove density
 - 200/mm for 20 250 eV
 - 400/mm for 200 1000 eV
- 1 spherical grating (5 40 eV)

Energy Resolution

A. Locatelli, A. Bianco, D. Cocco, S. Cherifi, S. Heun, M. Marsi, M. Pasqualetto, and E. Bauer: J. de Physique IV, submitted.

A. Locatelli, A. Bianco, D. Cocco, S. Cherifi, S. Heun, M. Marsi, M. Pasqualetto, and E. Bauer: J. de Physique IV, submitted.

Photon Beam Refocusing

- Need:
 - Homogeneous micro-spot
 - Highest photon flux in the field of view of the microscope
- Two adaptive plane elliptical mirrors («bendable mirrors»)
- Bend by applying unequal moments to their ends
- Kirkpatrick-Baez configuration
- Theoretical spot size:
 - 1.6 µm (vert) x 6.1 µm (hor)

A. Bianco, G. Sostero, and D. Cocco: Proc. SPIE, submitted.

Best Focus: Spot Size on Sample

Best Focus hv=140eV

Field of view: 55 µm

A. Bianco, G. Sostero, and D. Cocco: Proc. SPIE, submitted.

vertical line profile (FWHM 2 µm)

horizontal line profile (FWHM 25 μ m) corrected for grazing incidence: 7 μ m

Increased Spot Size

Field of view ~50 µm HRM roll misalignment (-700 steps)

XPEEM image at 5µm FOV Homogeneous illumination

Summary

Source:	Sasaki Apple II type undulator Polarization: circular, elliptical, and linear
Monochromator:	Spectral range: 20 - 1000 eV Spectral resolution: $E/\Delta E \sim 4000$ @ 400 eV

Spot:

Flux on sample: 10¹¹ - 10¹³ ph/s/200mA Focused spot size: 2 µm x 7 µm Vertical spot size from 2 µm to 10 µm

Outline

1. Spectromicroscopy at Elettra

2. The SPELEEM microscope

- 3. The Nanospectroscopy Beamline
- 4. First Results: MnAs on GaAs

Structural and Magnetic Phase Transition in MnAs/GaAs epitaxial Films Probed by LEEM and XMCD-PEEM

S. Cherifi, S. Heun, A. Locatelli Sincrotrone Trieste, Italy

L. Däweritz, M. Kästner Paul-Drude-Institut, Berlin, Germany

E. Bauer Arizona State University, Tempe, USA

Epitaxial MnAs on GaAs : Candidate for Spin Injection ?

Ferromagnetic epitaxial MnAs films on GaAs:

combination of ferromagnetic and

conventional semiconductor

spin injection

Here: XMCD-PEEM and LEEM study Magnetic properties vs. structure

Background

V. M. Kaganer, B. Jennichen, F. Schippan, W. Braun, L. Däweritz, and K. H. Ploog: PRL 85 (2000) 341.

A. Trampert, F. Schippan, L. Däweritz, and K. H. Ploog: Appl. Phys. Lett. 78 (2001) 2461.

Samples

MnAs films:

- grown at 250°C by MBE,
- annealed at 400°C, and
- capped with As before removal from the MBE chamber.

As-decapping at 320°C in the SPELEEM sample preparation chamber

Incompletely decapped MnAs Layer

T < 0°C: Ferromagnetic state

MnAs islands (dark) areMnAs islands in a completelysurrounded by crystallized Asferromagnetic state

E. Bauer, S. Cherifi, L. Daeweritz, M. Kaestner, S. Heun, and A. Locatelli: JVST, submitted.

Incompletely decapped MnAs Layer

T = Room temperature Intermediate ferromagnetic-paramagnetic state

The misfit strain causes coexistence of two phases over a temperature range of about 30°C around room temperature.

LEEM image electron energy = 4.5 eV

MnAs crystal showing a striped structure with alternating regions of the hexagonal α phase and the orthorhombic β phase.

E. Bauer, S. Cherifi, L. Daeweritz, M. Kaestner, S. Heun, and A. Locatelli: JVST, submitted.

Magnetic phase transition stage (multi-domain state) XMCD-PEEM images at the Mn L_3 edge

MnAs[11-20] easy magnetization axis is in the plane of incidence of the photon beam for optimum contrast

stripe period: 300 ± 10 nm

E. Bauer, S. Cherifi, L. Daeweritz, M. Kaestner, S. Heun, and A. Locatelli: Elettra Highlights 2001-2002.

T: 0 – 40°C

Structural and Magnetic Properties

Magnetic and structural phase transition stages during heating

E. Bauer, S. Cherifi, L. Daeweritz, M. Kaestner, S. Heun, and A. Locatelli: http://www.elettra.trieste.it/science/update

Movies

XMCD-PEEM

Evolution of the area fractions of the magnetic phases (ferromagnetic and paramagnetic) and structural phases (α and β) derived from rsp. XMCD-PEEM and LEEM images taken during heating.

Summary

• The phase transition of epitaxial MnAs films on GaAs(100) from the ferromagnetic α phase to the paramagnetic β phase occurs via phase separation into a ferromagnetic and paramagnetic striped phase without noticeable decrease of the magnetic moment.

- The stripe period (300 nm) is constant during this transition, causing a continuous decrease of the ferromagnetic stripe width.
- The stripes remain correlated until their distance exceeds a critical value at which they break up into small domains with opposite magnetization.