Nanospectroscopy with the SPELEEM at ELETTRA

(Spectroscopic PhotoEmission and Low Energy Electron Microscope)

S. Heun, A. Bianco, S. Cherifi, D. Cocco, M. Kiskinova, A. Locatelli, M. Marsi, and M. Pasqualetto *Sincrotrone Trieste* E. Bauer *Arizona State University*

Outline

1. Spectromicroscopy at Elettra

2. The Nanospectroscopy Beamline

3. The SPELEEM microscope

Outline

1. Spectromicroscopy at Elettra

2. The Nanospectroscopy Beamline

3. The SPELEEM microscope

Elettra Beamlines

exit	beamline	source
1.2L	Nanospectroscopy *	id
1.2R	FEL (Free-Electron Laser)	-
2.2L	ESCA Microscopy	id
2.2R	SuperESCA	id
3.2L	Spectro Microscopy	id
3.2R	VUV Photoemission	id
4.2	Circularly Polarised Light	id
5.2L	SAXS (Small Angle X-Ray Scattering)	id
5.2R	XRD1 (X-ray Diffraction)	id
6.1L	Material science	bm
6.1R	SYRMEP (SYnchrotron Radiation for MEdical Physics)	bm
6.2R	Gas Phase	id
7.1	MCX (Powder Diffraction Beamline)	bm
7.2	ALOISA (Advanced Line for Overlayer, Interface and Surface Analysis)	id
8.1L	BEAR (Bending magnet for Emission Absorption and Reflectivity) *	bm
8.1R	LILIT (Lab of Interdisciplinary LIThography)	bm
8.2	BACH (Beamline for Advanced DiCHroism) *	id
9.1	IRSR (Infrared Synchrotron Radiaton Microscopy)	bm
9.2	APE (Advanced Photoelectric-effect Experiments) **	id
10.1L	X-ray microfluorescence	bm
10.1R	DXRL (Deep-etch Lithography)	bm
10.2	IUVS (Inelastic Ultra Violet Scattering)	id
11.1	XAFS (X-ray Absorption Fine Structure)	bm
11.2	XRD2 (X-ray Diffraction)	id

Photoemission Microscopy

Photon optics is demagnifying the beam:

Scanning Instrument

- 1. Whole power of XPS in a small spot mode.
- 2. Flexibility for adding different detectors.
- 3. Rough surfaces can be measured.
- 4. Limited use for fast dynamic processes.
- 5. Lower resolution than imaging instruments.

Electron optics to magnify irradiated area:

Imaging Instrument

- 1. High lateral resolution (20 nm).
- 2. Multi-method instrument (XPEEM/PED).
- 3. Excellent for monitoring dynamic processes.
- 4. Poorer spectroscopic ability.
- 5. Sensitive to rough surfaces.

Concepts of Spectromicroscopy

3d

 $2p_{3/2}$

2p_{1/2}

XPS – mode: <u>hv=const</u> hv in / e⁻ out + energy filtering of electrons

XAS – mode: <u>hv scanned</u> hv in / e⁻ out (TEY) continuum E_{vac}

E_F

XANES: tuning on molecular orbitals

XMLD: imaging antiferromagnets

XMCD: imaging ferromagnets

Sum rules: Magnetic moment values

Outline

1. Spectromicroscopy at Elettra

2. The Nanospectroscopy Beamline

3. The SPELEEM microscope

Source: Variable Polarization

Monochromator:Wide spectral rangeMedium spectral resolution

Spot:

High photon flux density on sample Small variable spot size (~µm) Homogeneous illumination

Beamline Layout

Source Characteristics

- FEL/Nanospectroscopy undulator
- Sasaki Apple II type undulator
- 2 sections with phase modulation electromagnet
- 2 x 20 periods of length 10 cm
- Polarization: elliptical (horizontal, circular, and vertical)
- Source dimension: 560 μm x 50 μm

D. Cocco, M. Marsi, M. Kiskinova, K. C. Prince, T. Schmidt, S. Heun, and E. Bauer: Proc. SPIE 3767 (1999) 271.

Front End

Monochromator

Refocusing Mirrors

SPELEEM

2nd Branch

- 2 VLS (variable line spacing) gratings of low groove density
 - 200/mm for 20 250 eV
 - 400/mm for 200 1000 eV
- 1 spherical grating (5 40 eV)

Energy Resolution

A. Locatelli, A. Bianco, D. Cocco, S. Cherifi, S. Heun, M. Marsi, M. Pasqualetto, and E. Bauer: J. de Physique IV, submitted.

Photon Flux

A. Locatelli, A. Bianco, D. Cocco, S. Cherifi, S. Heun, M. Marsi, M. Pasqualetto, and E. Bauer: J. de Physique IV, submitted.

Photon Beam Refocusing

- Need:
 - Homogeneous micro-spot
 - Highest photon flux in the field of view of the microscope
- Two adaptive plane elliptical mirrors («bendable mirrors»)
- Bend by applying unequal moments to their ends
- Kirkpatrick-Baez configuration
- Theoretical spot size:
 - 1.6 µm (vert) x 6.1 µm (hor)

A. Bianco, G. Sostero, and D. Cocco: Proc. SPIE, submitted.

Best Focus: Spot Size on Sample

A. Bianco, G. Sostero, and D. Cocco: Proc. SPIE, submitted.

vertical line profile (FWHM 2 µm) 2500 2000 Intensity (a.u.) 1500 1000 500 0 4 -10 -8 -6 -4 -2 0 2 10 vertical position (um)

horizontal line profile (FWHM 25 μ m) corrected for grazing incidence: 7 μ m

Increased Spot Size

Field of view ~50 µm HRM roll misalignment (-700 steps)

XPEEM image at 5µm FOV Homogeneous illumination

Summary

Source: Sasaki Apple II type undulator Polarization: circular, elliptical, and linear

Monochromator:Spectral range: 20 - 1000 eVSpectral resolution: $E/\Delta E \sim 4000$ @ 400 eV

Spot:

Flux on sample: $10^{11} - 10^{13}$ ph/s/200mA Focused spot size: 2 µm x 7 µm Vertical spot size from 2 µm to 10 µm

Outline

1. Spectromicroscopy at Elettra

2. The Nanospectroscopy Beamline

3. The SPELEEM microscope

The SPELEEM

Spectroscopic photoemission and low energy electron microscope

Spectroscopic Microscopy

Images from a Field Effect Transistor (FET) at different binding energies. Photon energy hv = 131.3 eV.

Sample from M. Lazzarino, L. Sorba, and F. Beltram, Laboratorio TASC-INFM, Trieste, Italy

S. Heun, Th. Schmidt, B. Ressel, E. Bauer, and K. C. Prince, Synchrotron Radiation News Vol. 12, No. 5 (1999) 25.

XPEEM

S. Heun, Th. Schmidt, B. Ressel, E. Bauer, and K. C. Prince, Synchrotron Radiation News Vol. 12, No. 5 (1999) 25.

Lateral Resolution of LEEM

FoV = 2.65 µm STV = 7.5 eV 12.5 µm energy slit 30 µm contrast aperture 100 ms int. time, 2x2 binning

Pb on Si (111) LEEM – lateral resolution 13/11/2002 image_003

Profile line width = 3 pixels

Evaluated spatial resolution is 15 nm.

Lateral Resolution of XPEEM

FoV = 2.65 μ m STV = 1.2 eV, hv = 54.5 eV 12.5 μ m energy slit 20 μ m contrast aperture 15 s int. time, 2x2 binning

Pb on Si (111) XPEEM – lateral resolution imaging secondaries 12/11/2002 image_025

Profile line width = 7 pixels

Lateral Resolution of XPEEM

FoV = 2.65 μ m STV = 43.2 eV, hv = 144.0 eV 12.5 μ m energy slit 30 μ m contrast aperture 240 s int. time, 2x2 binning

Pb on Si (111) XPEEM – lateral resolution core level imaging – Si 2p 12/11/2002 image_033

Profile line width = 7 pixels

Energy Resolution of XPEEM

Pb on Si (111) XPEEM – energy resolution Pb 5d – Voigt fit 13/11/2002 scan_002

FoV = $2.65 \mu m$ hv = 130.0 eV $12.5 \mu m$ energy slit $30 \mu m$ contrast aperture 30 s int. time, 4x4 binning

Energy resolution better than **0.45 eV**.

