Electronic structure of carbon nanotubes studied by photoemission microscopy

S. Suzuki, Y. Watanabe, T. Ogino
NTT Basic Research Laboratories, Atsugi, Kanagawa, 243-0198 Japan

S. Heun, L. Gregoratti, A. Barinov, B. Kaulich, M. Kiskinova
Sincrotrone Trieste, Basovizza, 34012 Trieste, Italy

W. Zhu
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974 USA

C. Bower and O. Zhou
Department of Physics and Astronomy and Curriculum in Applied and Materials Science, University of North Carolina at Chapel Hill, North Carolina 27599 USA
Carbon Nanotubes

• Nanometer-scale highly one-dimensional structure.

• Specific electronic structure expected at tips, where graphene cylinders are hemispherically closed.

• Application as field emitters.

Standard model for metallic emitter (Fowler-Nordheim theory)
Applications

Field Emission Display
(Choi et al, APL 75 (1999) 3129)

Cathode Ray Tube
(Saito et al., JJAP 37 (1998) L346)
Aligned multi-walled carbon nanotubes
- Aligned perpendicular to Si substrate.
- Grown by microwave-plasma enhanced CVD.
- Length: 10 µm, diameter: 30 nm.

(b) Random MWNT
- Grown by thermal CVD on Si.
- Typical diameter 20 - 50 nm.
- Sidewall dominated.
Integral PES

PES: electronic structure
(work function, VB, core levels)

Experiments at BL-1C, PF, Tsukuba, Japan ($\Delta E = 0.1$ eV)

Aligned MWNT:
• Smaller workfunction
• Larger density of states at E_F
• Slight shift (0.2 eV) to higher binding energy side

\Rightarrow Band bending model

ESCA Microscopy Beamline

Flux density in a 0.01 µm² spot: $10^9 - 10^{10}$ ph/sec.

$\Delta x = 90$ nm
$\Delta E = 350$ meV
$hv = 500$ eV

Experiment:
Laterally resolved PES on nanotube side and tip in cross-section (core levels, VB).

Samples cleaved in air, then annealed at 200°C for 12h in UHV.

C 1s image:

- Contrast dominated by surface topography
- Bundles of MWNT clearly resolved

Tips have a larger density of states in the vicinity of the Fermi level than the sidewalls.

C 1s spectra

C 1s of tips shifts by 50 meV to lower BE.

Therefore band bending cannot explain the valence band spectra.

Localized states?

• Theoretically predicted [Tamura et al., PRB 52 (1995) 6015]: Pentagons induce localized electronic states at the tip of NT which cause peaks in the DOS near E_F.

• Experimentally verified for MWNT [Carroll et al., PRL 78 (1997) 2811] and SWNT [Kim et al., PRL 82 (1999) 1225].

• However, diameter of MWNT is 30 nm, so topological defects should not largely affect DOS.

• Edge state has been theoretically predicted as due to defects in graphene sheets (step edge with zigzag shape).

• Assuming higher defect density at tips, edge state would account for higher DOS at tips at E_F.

• However, this should be a sharp peak and not a ~ 1 eV wide feature.

Dangling bonds?

- Enhanced defect density at tips.
- Defects lead to formation of dangling bonds.
- Dangling bond states increase DOS at tips close to E_F.
- A dangling bond density of 10^{20} cm$^{-3}$ would explain the observed spectral change in the tip VB near E_F.
- There is evidence from TEM for such defect density [Zhou et al.: Science 263 (1994) 1744].
- The slight shift in C 1s may also be caused by dangling bonds.

Conclusion

- Electronic structure of aligned MWNT was measured along the tube axes with lateral resolution of 90 nm.
- Tips have larger DOS near E_F.
- Small (50 meV) shift of C 1s core level peak.
- Difference in spectra attributed to strong influence of structural defects on local electronic properties of nanotubes.
- Enhanced DOS near E_F at tips may strongly affect the field emission properties of the aligned MWNT.
- PF-measurement does not necessarily reflect a different electronic structure between tips and sidewalls, but can be a result of the different fabrication methods (MPE-CVD vs. thermal CVD).