Multi-Scale Simulations of Graphene for Energy Applications

Valentina Tozzini Istituto Nanoscienze del Cnr, NEST-SNS

Layout

Hydrogen and graphene: applications

- The method: Multi-scale simulations
- Results and perspectives

Hydrogenated graphene and nanoelectronics

Hydrogenated graphene and nanoelectronics

provided hydrogenation amount and decoration is controllable

CNRNANO

Electronic structure and Peierls instability in graphene nanoribbons sculpted in graphane V Tozzini, V Pellegrini PRB 81 (2011), 113404

Hydrogen fuel cell

Hydrogen & energy

As a fuel, hydrogen has advantages

- high energy-to-mass ratio
 H₂ + 1/2 O₂ → H₂O ΔH = -2.96eV
- Non-toxic, "clean" (product = water) and renewable

Hydrogen fuel cell

Hydrogen & energy

As a fuel, hydrogen has advantages

- high energy-to-mass ratio
 H₂ + 1/2 O₂ → H₂O ΔH = -2.96eV
- Non-toxic, "clean" (product = water) and renewable

However, hydrogen is NOT an energy source: it must be produced e.g. by electrolysis, needing +2.96 eV, with zero balance with respect to energy production

Hydrogen is an energy carrier (as electricity) and its advantages must be considered with respect to storage and transportation devices

♦ High energy storage capacity ✓
 ♦ Low dispersion (✓)
 ♦ Easy and practical use in standard conditions (✓)
 ♦ Safety (✓)

graphene has potentially all of these properties

♦ Molecular hydrogen chemi(de)sorption has high barrier (theoretical estimate \sim eV) \Rightarrow

chemisorbed H is stable for transportation etc, but catalytic mechanisms are necessary in the loading-release phases

⇒ Chemi(de)sorption is preferable to physisorption but it is a process

with a slow kinetics and difficult to control Toulouse, May 8th 2014

(Partial) summary:

Controlling chemi(de)sorption (or physisorption) of hydrogen is crucial for energetics and nanoelectronics applications, but it requires deep control on the material and innovative catalytic strategies

Theoretical and simulations studies can help designing these strategies, but the processes involve different length and time scales

The multi-scale simulation approach

QM-DFT calculations/simulations

electronic props fine structure hydrogenation chemistry Classical MD modeling/simulations

structure and dynamics on the nano-micro scale Continuum mechanicistic approaches

statistical behavior thermodynamics large scale mechanical/ chemical props

The multi-scale simulation approach

The multi-scale simulation approach

The multi-scale simulation approach

t PPs(RRKJ)+VdW (Grimme, 2006) aves (25 ryd), Davidson diag actional (checks with LDA) elaxation and dynamics BO timestep = 0.1-0.5fs ed annealing + local optimization

Different patterns and local curvature levels are generated by different boundary or compression conditions

- The relationship between curvature and H binding energy is linear
 - The reactivity towards H is enhanced on convexities and decreased in concavities ⇒
 - the curvature can be used to control H adsorption

This was experimentally verified by hydrogenation of naturally curved graphene grown on SiC

S. Goler et al. The influence of graphene curvature on H adsorption JPCC (2013)

V Tozzini, V Pellegrini Reversible H storage by controlled buckling of graphene Layers JPCC (2011)

- H is adsorbed on convex sites
 Inverting the curvature, H is found on concave sites: unstable adsorbate...
- 3. ... and H dissociation
- ⇒ Curvature inversion could be used as H release mechanism

Strain generate a bond distortion
 with a formation of isolated "benzenes"
 separated by single bonds

 Contraction induces pyramidalization and enhances reactivity

 When hydrogen is added on convexities, different pattern and level of hydrogenation generate systems with different band structure and gap

 Contraction induces pyramidalization and enhances reactivity

A Rossi, V tozzini Structure, electronic properties and stability of nano-scopically corrugated/hydrogenated graphene: a Density Functional Theory study in preparation

Create and maintain an extended multilayer structure

Create and maintain an extended multilayer structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Create and maintain an extended multilayer structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Control the curvature

if designed sensitive to external stimuli (e.g. light or E/M fields) pillars could also serve to create and control the curvature

Create and maintain an extended multilayer structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Control the curvature

if designed sensitive to external stimuli (e.g. light or E/M fields) pillars could also serve to create and control the curvature

Create and maintain an extended multilayer structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Control the curvature

if designed sensitive to external stimuli (e.g. light or E/M fields) pillars could also serve to create and control the curvature

Evaluate the effects on the macroscopic scales

Control the curvature

Control the curvature

Control by external **electric field** system: corrugated graphene sheet (like graphen on SiC)

The local curvature is enhanced by an electric field orthogonal to the sheet, due to electronic charge rearrangement

Control the curvature

Control by external **electric field** system: corrugated graphene sheet (like graphen on SiC)

The local curvature is enhanced by an electric field orthogonal to the sheet, due to electronic charge rearrangement

CNR**NANO** 📅

The effect is enhanced by B and N substitutions, creating local charges

Control the curvature

Control by external **electric field** system: corrugated graphene sheet (like graphen on SiC)

The local curvature is enhanced by an electric field orthogonal to the sheet, due to electronic charge rearrangement

CNR**NANO** 📅

The effect is enhanced by B and N substitutions, creating local charges

Next: Substrate adding, for direct comparson with experiment

T Cavallucci, V Tozzini in progress

Create and maintain an extended (multilayer) structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Control the curvature

if designed sensitive to external stimuli (e.g. light or E/M fields) pillars could also serve to create and control the curvature

Evaluate the effects on the macroscopic scales

Create and maintain an extended (multilayer) structure

Create and maintain an extended (multilayer) structure Classical classical atomistic MD

System: 10000-100000 atms (30-50 nm) plus H or substrate

Any periodic boundary conditions
 Software: DL_POLY, LAMMPS

- System Relaxation and dynamics
 - Classical dynamics, timestep ~1-2fs
 - Simulated annealing + local optimization
 - NVE, NVT, NPT

Create and maintain an extended (multilayer) structure Classical classical atomistic MD

System: 10000-100000 atms (30-50 nm) plus H or substrate

- Any periodic boundary conditions
 Software: DL POLY, LAMMPS
- System Relaxation and dynamics
 - Classical dynamics, timestep ~1-2fs
 - Simulated annealing + local optimization
 - NVE, NVT, NPT

Force Fields

Scheme 1: "Tersoff-like" potentials

- Capable of describing the sp2↔sp3 transition and the interaction with Si
- Good representation of the mechanical/energetic properties BUT...
- not capable of accurately treating the corrugation dependent hydrogenation

Create and maintain an extended (multilayer) structure Classical classical atomistic MD

System: 10000-100000 atms (30-50 nm) plus H or substrate

- Any periodic boundary conditions
 Software: DL POLY, LAMMPS
- System Relaxation and dynamics
 - Classical dynamics, timestep ~1-2fs
 - Simulated annealing + local optimization
 - NVE, NVT, NPT

Force Fields

Scheme 1: "Tersoff-like" potentials

- Capable of describing the sp2↔sp3 transition and the interaction with Si
- Good representation of the mechanical/energetic properties BUT...
- $_{\bigodot}$ not capable of accurately treating the corrugation dependent hydrogenation

Scheme 2: "connective" FF including

- energetics of compression/strain
- sp2-sp3 transition
- Interplay between curvature and hydrogenation
- interplay between BN doping, curvature and electric fields

R Farchioni, D Camiola, V Tozzini in progress

80

Create and maintain an extended (multilayer) structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Create and maintain an extended (multilayer) structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Control the curvature

if designed sensitive to external stimuli (e.g. light or E/M fields) pillars could also serve to create and control the curvature

Create and maintain an extended (multilayer) structure

"Spacers" molecules are currently under consideration to create "pillared" multilayer structure

Control the curvature

if designed sensitive to external stimuli (e.g. light or E/M fields) pillars could also serve to create and control the curvature

Evaluate the effects on the macroscopic scales

Evaluate the effects on the macroscopic scales

System: 2D surface, virtually infinite, any geometry
 Linear Elasticity

- Bending energy
- Theory of plates
- Interactions
 - Adhesion energy (theory of adhesion)
 - H binding
 - Self-consistent modification of the local curvatures
- Parameterization based on DFT and MM calculations. The following properties should be mapped onto the surface
 - Dependence between H binding probability/adhesion and curvature
 - elasticity and its dependence on H binding
 - Barriers and other energetics

This approach will allow to address the thermodynamics of the process and the macroscopic scales in time and space \Rightarrow

- Direct comparison with experiment
- Devices design

J. Zang, Q. Wang, Q. Tu, S. Ryu, N. Pugno, M. Buehler, X. Zhao , Nat. Mat ., 12, 321 (2013).

N. Pugno, A. Astron., 82, 221 (2013).

Toulouse, May 8th 2014

N.Pugno, J. Mech. Phys. Solid., 58, 1397 (2010)

X. Shi, Y. Cheng, N. Pugno, H. Gao, Small, 6, 739 (2010)

 $\kappa_{x} = 1 \text{ nm}^{-1}$

Conclusions

Multi-scale approaches are useful to design new devices, since they couple the accuracy and microscopic physics to the macroscopic effects

We addressed several problems related to the design graphene-based devices for energy and nano-electronics applications

• control of reactivity by means of control of curvature

Interpretended in the second secon

how to create stable multi-layers (in progress)

how to evaluate macroscopic energetics and thermodynamics (in progress)

Collaborators

Riccardo Farchioni Dario Camiola Antonio Rossi Tommaso Cavallucci Stefan Heun, Torge Mashoff, Yuia Murata, Sarah Goler Vittorio Pellegrini Nicola Pugno NANO-Cnr NANO-Cnr PostDoc Flagship Università di Pisa, undergraduate student Università di Pisa, undergraduate student

NANO-Cnr (experiment) iit Graphene Labs (experiment) Univ Trento, FBK

Support

Platform Computation

GRAPHENE FLAGSHIP

