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Hydrogenated graphene and nanoelectronics

partially hydrogenated graphene 
is a tunable semiconductor, 
provided hydrogenation amount 
and decoration is controllable
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Hydrogen & energy  

❖ high energy-to-mass ratio 
H2 + 1/2 O2 → H2O    ΔH = -2.96eV 

❖ Non-toxic, “clean” (product = water) and 
renewable

Hydrogen fuel cell

As a fuel, hydrogen has  advantages
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Hydrogen & energy  

❖ high energy-to-mass ratio 
H2 + 1/2 O2 → H2O    ΔH = -2.96eV 

❖ Non-toxic, “clean” (product = water) and 
renewable

Hydrogen fuel cell

As a fuel, hydrogen has  advantages

However, hydrogen is NOT an energy 
source: it must be produced e.g. by 
electrolysis, needing +2.96 eV, with zero 
balance with respect to energy production

Hydrogen is an energy carrier (as electricity) and its advantages must be 
considered with respect to storage and transportation devices

❖High energy storage capacity ✓ 
❖Low dispersion (✓)
❖Easy and practical use in standard conditions (✓) 
❖Safety (✓)

graphene has potentially all of these properties
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❖ Physisorption  weakly 
bounds hydrogen ⇒ 
acceptable storage 
densities only at low 
temperatures and/or high 
pressure
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H storage in graphene 
❖ Atomic hydrogen 
chemisorption has a small 
or negligible chemisorption 
barrier  ⇒ 
feasible, but H2 must be 
cracked

❖ Molecular hydrogen chemi(de)sorption has high barrier (theoretical estimate ~eV)  ⇒ 
chemisorbed H is stable for transportation etc, but catalytic mechanisms are necessary 
in the loading-release phases

❖ Physisorption  weakly 
bounds hydrogen ⇒ 
acceptable storage 
densities only at low 
temperatures and/or high 
pressure

⇒ Chemi(de)sorption is preferable to physisorption but it is  a process 
with a slow kinetics and difficult to control
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(Partial) summary:
❖Controlling chemi(de)sorption (or physisorption) of hydrogen is crucial for 
energetics and nanoelectronics applications, but it requires deep control on the 
material and innovative catalytic strategies 
❖ Theoretical and simulations studies can help designing these strategies, but 
the processes involve different length and time scales

The multi-scale simulation approach

QM-DFT 
calculations/simulations

electronic props
fine structure
hydrogenation chemistry

Classical MD 
modeling/simulations

structure and 
dynamics on the 
nano-micro scale

Continuum mechanicistic 
approaches

statistical behavior
thermodynamics
large scale mechanical/
chemical props
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The multi-scale simulation approach

 “Parallel” 
combination
The methods are 
used in the same 
simulation/calculation 
(“hybrid” approach)
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“Serial” combination
❖The different representations  are 
used in separate simulations/
calculations
❖Coherency among level is 
maintained in two ways

๏Higher levels are parameterized 
based on lower level data
๏Structures and other local data are 
deduced and used at the lower levels 
from the higher ones

The multi-scale simulation approach
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QM-DFT: study of reactivity vs rippling

Different	
  paQerns	
  and	
  local	
  curvature	
  levels	
  	
  are	
  generated	
  
by	
  different	
  boundary	
  or	
  compression	
  condi@ons

Scheme 1 DFT-CPMD (CPMD 3.13)
❖Systems: ~Squared cells
๏Large cell: 180 C atms, 22.13x21.30x15 Å (and 
contracted) Γ point
๏Small cell: 24 C atms, 7.28x8.41x14.6 Å, 40 K points MP

❖DFT
๏TM pseudo-potentials + VdW (Grimme, 2006)
๏ plane waves (60 Ryd cutoff), Davidson diag
๏PBE functional (checks with BLYP)

❖System Relaxation and dynamics
๏CP dyn, electron mass preconditioning, timestep = ~0.1fs
๏Simulated annealing + local optimization
๏Nosé Thermostat, restrained/damped MD (metadyn in 
progress)

Scheme 2 DFT-QE (QE 5.0.2)
❖Systems: orthorombic cells
๏6x6(30deg): 54 C atms, 12.78 Å (and contracted/
expanded),  K points 7x7x1 
๏13x13: 338 C atoms, 31.97 Å, Γ point, checks with K points
๏Same on SiC substrate, 1300-1500 atms and with electric 
field (in progress)

❖DFT
๏Ultrasoft PPs(RRKJ)+VdW (Grimme, 2006) 
๏plane waves (25 ryd), Davidson diag
๏PBE functional (checks with LDA)

❖System Relaxation and dynamics
๏CP and BO timestep = 0.1-0.5fs
๏Simulated annealing + local optimization
๏Nosé Thermostat, restrained/damped MD 
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This	
  was	
  experimentally	
  verified	
  by	
  
hydrogena@on	
  of	
  naturally	
  curved	
  graphene	
  
grown	
  on	
  SiC
S.	
  Goler	
  et	
  al.	
  The	
  influence	
  of	
  graphene	
  curvature	
  on	
  H	
  
adsorp@on	
  JPCC	
  (2013)	
  
V	
  Tozzini,V	
  Pellegrini	
  Reversible	
  H	
  storage	
  by	
  controlled	
  
buckling	
  of	
  graphene	
  Layers	
  JPCC	
  (2011)

The	
  reac@vity	
  towards	
  H	
  is	
  enhanced	
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  binding	
  energy	
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  linear
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QM-DFT: study of reactivity vs rippling



Toulouse, May 8th 2014

QM-DFT: study of reactivity vs rippling
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1. H is adsorbed on convex sites
2. Inverting the curvature, H is found on concave 
sites: unstable adsorbate...

⇒ Curvature inversion could be used as  
H release mechanism

3. ... and H dissociation

QM-DFT: study of reactivity vs rippling
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1. H is adsorbed on convex sites
2. Inverting the curvature, H is found on concave 
sites: unstable adsorbate...

⇒ Curvature inversion could be used as  
H release mechanism

3. ... and H dissociation

Curvature inversion by mechanical wave 

QM-DFT: study of reactivity vs rippling

⇒ Application to H storage 
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QM-DFT: study of reactivity vs rippling
๏	
  Strain	
  generate	
  a	
  bond	
  distor@on	
  
with	
  a	
  forma@on	
  of	
  isolated	
  “benzenes”	
  
separated	
  by	
  single	
  bonds

๏	
  Contrac@on	
  induces	
  pyramidaliza@on	
  
and	
  enhances	
  reac@vity
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๏	
  When	
  hydrogen	
  is	
  added	
  on	
  
convexi@es,	
  different	
  paQern	
  and	
  level	
  of	
  
hydrogena@on	
  generate	
  systems	
  with	
  
different	
  band	
  structure	
  and	
  gap

A Rossi, V tozzini  Structure, electronic properties and stability of 
nano-scopically corrugated/hydrogenated graphene: a Density 
Functional Theory study in preparation

QM-DFT: study of reactivity vs rippling
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❖ Create and maintain an extended multilayer structure
Towards real devices
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“Spacers” molecules are currently under consideration to 
create “pillared” multilayer structure
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❖ Create and maintain an extended multilayer structure
“Spacers” molecules are currently under consideration to 
create “pillared” multilayer structure

if designed sensitive to external stimuli (e.g. light or E/M fields) 
pillars could also serve to create and control the curvature
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❖ Create and maintain an extended multilayer structure
“Spacers” molecules are currently under consideration to 
create “pillared” multilayer structure

if designed sensitive to external stimuli (e.g. light or E/M fields) 
pillars could also serve to create and control the curvature

Towards real devices

❖Evaluate the effects on the macroscopic scales
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❖Control the curvature
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Towards real devices
❖Control the curvature

The local curvature is 
enhanced by an 
electric field 
orthogonal to the 
sheet, due to 
electronic charge 
rearrangement

Control by external electric field
system: corrugated graphene sheet (like 
graphen on SiC)
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Towards real devices
❖Control the curvature

The local curvature is 
enhanced by an 
electric field 
orthogonal to the 
sheet, due to 
electronic charge 
rearrangement

Control by external electric field
system: corrugated graphene sheet (like 
graphen on SiC)

The effect is 
enhanced by B and 
N substitutions, 
creating local 
charges



T Cavallucci, V 
Tozzini  in 
progress

Next: Substrate adding, for 
direct comparson with 
experiment
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Towards real devices
❖Control the curvature

The local curvature is 
enhanced by an 
electric field 
orthogonal to the 
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rearrangement

Control by external electric field
system: corrugated graphene sheet (like 
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creating local 
charges
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❖ Create and maintain an extended (multilayer) structure
“Spacers” molecules are currently under consideration to 
create “pillared” multilayer structure

if designed sensitive to external stimuli (e.g. light or E/M fields) 
pillars could also serve to create and control the curvature

Towards real devices

❖Evaluate the effects on the macroscopic scales
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❖ Create and maintain an extended (multilayer) structure



❖System: 10000-100000 atms (30-50 nm) plus H or substrate
๏Any periodic boundary conditions
๏Software: DL_POLY, LAMMPS 

❖System Relaxation and dynamics
๏ Classical dynamics, timestep ~1-2fs
๏ Simulated annealing + local optimization
๏ NVE, NVT, NPT
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Classical classical atomistic MD
❖ Create and maintain an extended (multilayer) structure
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❖ Force Fields
❖  Scheme 1: “Tersoff-like” potentials 
๏ Capable of describing the sp2↔sp3 transition and the interaction with Si
๏ Good representation of the mechanical/energetic properties 

BUT…
๏ not capable of accurately treating the corrugation dependent hydrogenation

Classical classical atomistic MD
❖ Create and maintain an extended (multilayer) structure
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❖  Scheme 2: “connective” FF 
including

๏ energetics of compression/strain
๏ sp2-sp3 transition
๏ Interplay between curvature and 
hydrogenation
๏ interplay between BN doping, 
curvature and electric fields 

R Farchioni, D Camiola, V Tozzini in 
progress

❖ Force Fields
❖  Scheme 1: “Tersoff-like” potentials 
๏ Capable of describing the sp2↔sp3 transition and the interaction with Si
๏ Good representation of the mechanical/energetic properties 

BUT…
๏ not capable of accurately treating the corrugation dependent hydrogenation

Classical classical atomistic MD
❖ Create and maintain an extended (multilayer) structure
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❖Control the curvature

❖ Create and maintain an extended (multilayer) structure
“Spacers” molecules are currently under consideration to 
create “pillared” multilayer structure

if designed sensitive to external stimuli (e.g. light or E/M fields) 
pillars could also serve to create and control the curvature
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❖System: 2D surface, virtually infinite, any geometry 
❖Linear Elasticity

๏ Bending energy
๏  Theory of plates

❖ Interactions
๏ Adhesion energy (theory of adhesion)
๏ H binding
๏ Self-consistent modification of the local curvatures 

❖ Parameterization based on DFT and MM calculations. The 
following properties should be mapped onto the surface
๏ Dependence between H binding probability/adhesion 

and curvature
๏ elasticity and its dependence on H binding
๏ Barriers and other energetics

J. Zang, Q. Wang, Q. Tu, S. Ryu, N. Pugno, M. Buehler, X. Zhao , Nat. Mat ., 12, 321 (2013). 
N. Pugno, A. Astron., 82, 221 (2013).
N.Pugno, J. Mech. Phys. Solid., 58, 1397 (2010)
X. Shi, Y. Cheng, N. Pugno, H. Gao, Small, 6, 739 (2010)

This approach will allow to address the thermodynamics of the process and the 
macroscopic scales in time and space ⇒
❖ Direct comparison with experiment
❖ Devices design

Towards real devices
❖Evaluate the effects on the macroscopic scales
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Conclusions
❖Multi-scale approaches are useful to design new devices, 
since they couple the accuracy and microscopic physics to the 
macroscopic effects 
❖We addressed several problems related to the design 
graphene-based devices for energy and nano-electronics 
applications
๏control of reactivity by means of control of curvature
๏different means of curvature control (mechanical, electric 

field, chemical, in progress)
๏how to create stable multi-layers (in progress)
๏how to evaluate macroscopic energetics and 

thermodynamics (in progress)
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