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Introduction

The revolutionary impact of quantum theory is intimately linked to the suc-
cess of microelectronics. In turn, the ability to exploit quantum effects in
nanoscopic devices was often related to the advent of technological break-
throughs (new materials, innovative experimental setup, etc.) that allowed
to reveal and control non-classical phenomena. The progress of quantum
Hall (QH) physics is a good example of such processes. Initially, the de-
velopement of the MBE technique made it possible to grow clean crystals
with accurate composition control to the layer-by-layer limit. Hence, it be-
came possible to obtain heterostructures embedding two dimensional elec-
tron gases (2DEGs) with extremely high mobility. In the presence of an
intense magnetic field, the suppression of scattering events that destroy the
electronic phase coherence enables the formation of highly degenerate quan-
tum states, called Landau levels (LL).

The interest in the development of solid state quantum devices goes
well beyond fundamental research on many-body systems. The most amaz-
ing (and disconcerting) issue in quantum mechanics is the entanglement of
identical particles. In the last decade entanglement has become synonymous
with quantum computing. So far, a number of physical systems were pro-
posed as possible candidates for quantum computing hardware [1] and many
groups are working in this field to explore these options and to identify the
best solution for practical devices.

In this context, the peculiar properties of QH systems can be very use-
ful. First of all, being implemented in solid state devices, they can be
easily miniaturized and integrated on chip by means of well-established
semiconductor-technology fabrication methods. More fundamentally, QH
circuits operate with electrons: due to their fermionic statistics, it is much
easier to obtain a single-electron than a single-photon source. Moreover,
in QH systems, the Lorentz force compels electrons to move along counter-
propagating chiral channels at sample edges. When the LLs in the bulk are
fully occupied, backscattering between counter-propagating edge states is
drastically suppressed. When several LLs are populated, edge channels con-
sist of a series of dissipationless edge states, that can be easily separated and
indipendently contacted much like a computer bus. Edge channels in the
fractional QH regime are even more interesting, since their excitations are
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6 Introduction

expected to display anyonic statistics [2]. Transport experiments [3, 4] sug-
gested a further puzzle: due to electron-electron interactions, an individual
integer edge channel seems to have a non-trivial inner structure: depending
on the local density at the edge, the electron phase can be compressible or in-
compressible, giving rise to a series of isolated stripes that can be separately
contacted.

A two-particle entangler can in principle be obtained by subsequently
mixing counter-propagating and co-propagating edge channels [5]. While
coherent mixing between counter-propagating edge states was achieved by
means of quantum point contacts [6], a coherent mixer operating between
co-propagating states has not been demonstrated yet. Samuelsson et al.
proposed a solution to avoid the need to mix edge channels from different
LLs [7]. These authors proposed an electronic analogue of the Hanbury–
Brown–Twiss interferometer, which was demonstrated experimentally in
2007 [8]. Such devices have nevertheless several drawbacks caused by their
non-simply connected topology. Besides the practical difficulty to contact
microscopic isolated ohmic contacts, it is not obvious how to concatenate
many devices in series, i.e. how to achieve scalability. On the contrary,
Giovannetti et al. [9] recently theoretically showed that if a coherent mixer
between co-propagating edges is indeed realized, scalable simply-connected
interferometers can be build. Such devices could in principle work with
many modes, if implemented in QH systems with filling factor ν > 2. This
advantage, along with the scalability, could be pivotal to unfold the po-
tential of quantum circuits as electron entanglers and open the way to an
innovative class of quantum computing devices.

The application of this scheme to the quantum computation of anyonic
qubits crucially depends on the ability to determine (i) how parallel edge
channels can be mixed, and whether this mixing is coherent or not; and (ii)
the inner structure of edges, and in particular to determine possible frac-
tional components that could be used as a bus of anyonic quasi-particles.
The present thesis is aimed at experimentally addressing these challenging
questions. To this end, we exploited a scanning probe microscopy (SPM)
technique to directly manipulate edge channels. With the term “manipu-
late” here we mean indeed to pull, push, squeeze, displace quantum states
by means of the electrostatic potential induced by a metallic tip, which acts
as a scanning gate.

The first goal of our work has been to exploit the scanning gate mi-
croscopy (SGM) technique to extract spatially-resolved information about
the edge-channel inner structure. As will be shown in chapter 3, our SGM
maps provide the first images of the fractional stripes that form the inner-
edge structure. The high resolution of the SGM technique allowed us to
directly measure stripe widths and compare them with the predictions of
the edge electrostatics theory [10]. Next, we designed a QH circuit whose
geometry can be controlled at low temperature by moving the tip. Such an
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innovative device was employed to locally investigate the microscopic pro-
cesses that are responsible for the charge equilibration of bias imbalanced
co-propagating channels. We will discuss how such device can be exploited
as a beam mixer in simply-connected Mach-Zehnder interferometers.

This thesis is structured as follows:

• Chapter 1. A brief introduction to the physics of QH circuits is pre-
sented. This part is aimed at introducing all the fundamental physical
issues we deal with in the following chapters.

• Chapter 2. We review and discuss the most relevant SPM techniques
applied to the study of QH systems.

• Chapter 3. We report the results of our SGM experiments on quan-
tum point contacts in the QH regime. We show the first images of the
alternating fractional compressible and incompressible stripes, which
form the inner structure of integer edge channels.

• Chapter 4. We demostrate a size-tunable QH circuit, and we show
how the SGM can be exploited to image the scattering processes be-
tween co-propagating edge channels.

• Chapter 5. We summarize the main results of this thesis, and discuss
future perspectives and developments.
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Chapter 1

Transport in quantum Hall
systems

In the solid state it is not easy to generate a self-focused one-dimensional
(1D) beam of electrons that can propagate along the desired trajectory with-
out dissipation or backscattering. It is even harder to achieve a long coher-
ence length, to locally probe the chemical potential, to generate terahertz
radiation, or to coherently split the electron wave in two paths. All these
features are naturally built-in in quantum Hall (QH) systems. As a con-
sequence they were successfully used to implement coherent circuits as, for
instance, quantum electron interferometers.

Since QH systems play a central role in this work, in this chapter we
shall review some of the most relevant aspects of the edge channel physics
in both the integer and the fractional QH regimes.

1.1 The integer quantum Hall effect

The typical device used to observe the QH effect is schematically depicted
in Fig. 1.1(a). It is called Hall bar and consists of a rectangular 2DEG with
a source and a drain contact that allow to drive current along one axis of the
sample, and pairs of contacts used to probe the voltage either on the same
or on opposite sides of the bar. The classical theory predicts that the Hall
resistance RH ≡ Rxy ≡ Vxy/I0 is proportional to the perpendicular mag-
netic field B, while the longitudinal resistance Rxx ≡ Vxx/I0 is a constant
which depends on mobility. However, if we perform the measurements on a
high electron mobility sample at low temperature, we can observe a depar-
ture from the classical behavior in correspondence to peculiar values of the
magnetic field. For such values RH and Rxx display plateaus and minima,
respectively. Figure 1.1(b) shows the results of a four-wire measurement of
both the longitudinal and the Hall resistance, as a function of the magnetic
field. We performed this measurement (called Shubnikov-de Haas measure-
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10 1.1. The integer quantum Hall effect
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Figure 1.1: (a) Sketch of the typical setup used to measure the QH effect.
While a bias current I0 is driven between the source (S) and drain (D) contact,
two pairs of voltage probes allow to detect the voltage drop across the Hall
bar (Vxy) and along one edge (Vxx). (b) Longitudinal (Rxx) and Hall (Rxy)
resistance measured on sample A, at 400 mK.

ment) at 400 mK on sample A,1 whose mobility and sheet electron density
are µA = 4.6× 106 cm2/Vs, and nA = 1.77×1011 cm−2, respectively.

The integer QH effect can be explained on the basis of the quantized 2D
motion of independent electrons in a high magnetic field, in the presence of
a confining potential and a small amount of disorder. The magnetic field
quenches the electron kinetic energy in a discrete set of quantum levels,
called Landau levels (LLs), whose energy spacing is given by the cyclotron
energy h̄ωc ≡ h̄eB/m∗. The degeneracy per unit area of such levels is

nL =
eB

h
≡ 1

2π`2B
, (1.1)

where `B (the so-called magnetic length) is the fundamental length scale for
QH phenomena. The number of occupied LLs is expressed by the filling
factor, defined as the ratio between the total electron density of the 2DEG
n0 and the LL degeneracy:

ν ≡ n0
nL

=
n0h

eB
. (1.2)

By sweeping the magnetic field, we can change the number of occupied LLs,
and thus the chemical potential of the 2DEG. Plateaus in RH and min-
ima in Rxx occur when ν is an integer number, i.e. when LLs are either
fully occupied or empty. If the electron temperature is smaller than the LL
energy spacing, no low-lying excitations are present. Therefore the 2DEG
bulk is gapped and behaves as an insulator. In these conditions, charge is

1All samples reported in this thesis are listed in Appendix C.1, together with their
main parameters.
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Figure 1.2: By tuning the magnetic field it is possible to set the chemical
potential between two consecutive LLs in the bulk. In this case the filling
factor is integer (ν = 2 in this sketch) and the bulk behaves as an insulator.
Gapless excitations can only occur at the sample edge, where the confining
potential U(x) bends the LLs upward. As in the classical case, the group
velocity of the electrons is directed along ∇U × B. This vector changes sign
at the opposite sides of the QH liquid, so that charged excitations give rise to
chiral 1D channels.

only carried by chiral 1D channels at the sample edge. The edge-channel
picture is due to Halperin [11], and is based on the observation that an ex-
ternal potential is necessary to confine electrons in a sample of finite size.
If this potential is sufficiently smooth, it can be treated as a perturbation
that gradually increases the LL energy at the edge. Therefore, low-energy
excitations can occur at the intersection between the chemical potential and
the perturbed LLs, as shown in Fig. 1.2. The group velocity of these ex-
citations has opposite sign at opposite edges, i.e. the QH system is chiral.
The propagation direction is the same as that of the classical skipping orbit
describing the motion of an electron subject to a vertical magnetic field and
a horizontal electric field. The large (compared to `B) spatial separation
between counter-propagating edge states prevents electron backscattering.
This picture makes it possible to explain the curves in Fig. 1.1(b). When
we apply a non-zero voltage V0 between source and drain contacts, we im-
balance the electrochemical potential between the upper (right-moving) and
the lower (left-moving) edge channels, since, owing to chirality, they are in
equilibrium with the source and the drain contact, respectively. The excess
of right-moving electrons yields a net source-drain current (see Appendix A)

I0 =
νe2

h
V0. (1.3)

When the bulk is gapped, backscattering is suppressed and the electrochem-
ical potential is constant along each edge. Therefore the voltage difference
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between two points on the same side of the Hall bar is zero, while it is V0
between points sitting on opposite edges. As a consequence, we measure
RH = h/νe2 and Rxx = 0.

One final element is needed to explain the curves in Fig. 1.1: disorder.
In fact, in a perfect system the number of edge states (which scales as the
sample length) is negligible with respect to the number of bulk states (which
scales as the sample area), so that the bulk would be gapped only for ex-
act, discrete values of the magnetic field B, i.e. B = n0h/νe. The finite
width of plateaus for RH and zeroes for Rxx can be explained by consid-
ering that when a LL is populated, the first occupied states are localized
around the local minima of the disorder potential. These localized states do
not contribute to transport, while they do contribute to the density of states
between LLs. The transport characteristics cannot change until all the lo-
calized states are occupied, so that RH and Rxx are found to be constant
for a finite range of B values.

In the description presented so far, we completely neglected the spin
degree of freedom. To first order, it can be taken into account by adding
the Zeeman term ±g∗µBB/2 (where g∗ is the effective Landé factor) to the
single–particle Hamiltonian. Both the Zeeman and the cyclotron energy de-
pend linearly on magnetic field, though the former is about 70 times smaller
than the latter due to the effective values of the electron mass and Landé
factor in AlGaAs/GaAs structures. Exchange interactions can, however,
significantly affect the actual Zeeman gap [12]. This is not the only effect
of electron-electron interactions. In the next sections we shall discuss their
dramatic impact on a highly degenerate ground state as a partially filled
LL, and their role in determining the screening properties of the 2DEG.

1.2 The fractional quantum Hall effect

What happens if we increase the magnetic field beyond the ν = 1 point in
the plot of Fig. 1.1(b)? From the non-interacting model presented so far,
we do not expect anything of interest. The degeneracy of the first LL is
now higher than the total number of electrons, and the many-body ground
state should be strongly degenerate. Figure 1.3 shows the results of the
Shubnikov-de Haas measurement reported in Ref. [13]. Notably, plateaus
and minima are also observed for peculiar fractional values of the filling
factor. The discussion in the previous section indicates that for such values
the 2DEG is gapped. This behavior was discovered in 1983 by H. L. Störmer
and D. C. Tsui [14], and is called fractional QH effect. It can only be
explained by taking electron correlations into account. The first theoretical
model of the fractional QH effect was provided by R. B. Laughlin [15], who
found that for ν = 1/(2p+ 1) (where p is an integer number), there exists a
particular arrangement of the electrons that reduces the total energy. Such
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Figure 1.3: Plot of the Shubnikov-de Haas measurement reported in Ref. [13].
The minima in Rxx and the plateaus in Rxy observed for ν < 1 (B > 10 T)
cannot be explained by a single-particle model. The fractional QH effect is a
many-body phenomenon.

arrangement is described by the analytical many-body wavefunction [15]

ΨL
2p+1(z1, ..., zN ) = A

∏
i<j

(zi − zj)2p+1
∏
k

e−|zk|
2/4`2B , (1.4)

where zk ≡ (xk + iyk)/`B is a complex variable representing the position
(xk, yk) of the k-th electron in the 2DEG and A is a normalization constant.
The polynomial part takes into account both the antisymmetry with respect
to the permutation of any two electrons and electron-electron repulsion,
since each electron sees an m-fold zero at the position of the other electrons.
This wavefunction is exact for systems with few electrons (from 3 to 10), as
confirmed by numerical simulations. Laughlin demonstrated that the ground
state described by Eq. 1.4 is incompressible, i.e. perturbations smaller that a
finite excitation gap cannot change the density. This excitation gap is of the
order of one tenth of e2/ε`B, which corresponds approximately to the energy
required to add a disk with area h/eB and charge νe to the 2DEG [16]. For
larger perturbations the electron system nucleates localized regions with
higher density. Such charge-density excitations display rather interesting
features. They can be described as quasi-particles carrying fractional charge
q∗ = νe, and can be experimentally revealed by measuring the shot-noise
signal in tunneling experiments [17].

The wavefunction in Eq. 1.4 describes the so-called Laughlin series,
i.e. the fundamental sequence of filling factors ν = 1/(2p+1). This sequence
can be extended by considering that excitations of a Laughlin ground state
can rearrange themselves to generate a daughter ground state [18]. It is pos-
sible to iterate this procedure to generate the following hierarchy of filling
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factors:
ν =

q

2qp± 1
, (1.5)

where both q and p are positive integers numbers. The series in Eq. 1.5 cover
almost all filling factors experimentally observed. However, the hierarchy of
the ground states does not correspond to the actual relative amplitude of
the excitation gaps. For instance, the existence of fractions such as 6/13,
that belong to the fifth generation, is well established experimentally.

An alternative approach to the description of fractional QH systems is
provided by the theory of composite fermions, developed by J. K. Jain [19,
20]. The idea of this method is to replace the electron-electron interaction
term in the many-body Hamiltonian by a fictitious vector potential acting on
the electrons. Then, the mean value of this field is taken, so that the resulting
Hamiltonian is actually single-particle and can be solved in the same way
as for the integer QH effect. The change in the many-body Hamiltonian is
equivalent to the attachment of 2p quanta of magnetic flux to each electron.
Such flux quanta are directed in the opposite direction with respect to the
external field. Each bound state of one electron and 2p flux quanta is called
composite fermion. It moves in the mean field generated by all the other
composite fermions plus the external magnetic field. The effective magnetic
field experienced by the composite fermions is thus

B∗ = B − 2p
h

e
n = B(1− 2pν). (1.6)

In Jain’s theory the fractional QH effect is thus the integer QH effect for
composite fermions. The actual filling factor (ν) is deduced from the effective
integer one (ν∗) via Eq. 1.6:

ν =
ν∗

2pν∗ ± 1
. (1.7)

Equation 1.7 provides the principal sequences of filling factors at which
fractional QH states are experimentally observed.

We pointed out that a change in the electron density of both integer
and fractional QH liquids costs a finite amount of energy, i.e. these systems
behave as incompressible liquids. Finite incompressible liquids, however,
can support gapless excitations at the edge [11]. These excitations consist
in modulation of the boundary shape that preserve the total area. The
edge can be described as the boundary between two regions with electron
density n = νeB/h and n = 0, respectively, in presence of a magnetic
field (B) orthogonal to the 2DEG plane and an in-plane confining elec-
tric field (E) orthogonal to the edge. By the Lorentz force a density wave
propagates along the edge with velocity v = (E × B)/B2. In 1990, Wen
showed [21, 22] that fractional edge states behave as chiral Luttinger liquids.
Due to their peculiar phase space, interactions in one-dimensional electron
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systems (1DES) cannot be treated perturbatively. Interactions dramatically
impact the ground state occupation of the electron liquid, which displays
a non-fermionic behavior. Before the discovery of the QH effect, Luttinger
liquids had only been studied theoretically [23] because of the difficulties
encountered in the fabrication of clean 1DES. Fractional edge states provide
a valuable tool to experimentally test the predictions of the Luttinger liquid
theory, for instance by studying the zero-bias charge transfer between two
counter-propagating edge channels brought into close proximity [24–27].

1.3 The reconstruction picture

The occurrence of a finite gap for bulk excitations in a partially filled LL
is not the only effect of electron-electron interactions. These also impact
the ability of the 2DEG to screen external potentials. In a gapped system
screening is suppressed owing to the Pauli principle. Electron density is con-
stant in the bulk and displays jumps of nL in correspondence to each edge
channel, as shown in Fig. 1.4(a). In any realistic sample such jumps actu-
ally have finite width. This implies the occurrence of a compressible region
where the screening of the confinement potential is highly effective. In order
to quantitatively and self-consistently determine the actual density profile
and the extent of the compressible and incompressible regions, Chklovskii
et al. [10] took electron-electron interactions into account in the mean-field
approximation. The first step of their work consisted in classically calculat-
ing the electron-density distribution for a given confining potential in the
absence of a magnetic field. In their analysis, the authors considered only
a smooth confining potential defined by applying a negative voltage Vg to
a metal gate fabricated on the sample surface. Due to the smallness of the
h̄ωc/eVg parameter, the electron density profile is not significantly altered
by the magnetic field. In fact, any variation would require a large amount
of work against the electrostatic forces. The only effect of the magnetic field
is to change the screening radius as a function of the local filling factor

rs =

{
∞ if ν = k
0 if ν 6= k,

(1.8)

where k is an integer number. Let us consider the case of a bulk filling factor
1 < νb < 2. In this case a single incompressible region is expected to occur
at the positions x1, where ν(x1) = 1. This incompressible stripe (IS) has a
finite width because the system can gain energy by relocating electrons from
the second LL to the first one in the vicinity of x1. In general, the width of
the k-th incompressible region can be calculated by assuming that the drop
of the external potential at its edges is ∆µk/e, where ∆µk is the chemical
potential jump between the k-th and the (k+ 1)-th LL. The estimate found
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Figure 1.4: (a) The single-particle model for the edge of a QH system. The
confinement potential (red line) can be considered as a perturbation of the
single-particle energies. A finite jump in the electron density n(x) occurs when-
ever a LL crosses the chemical potential. (b) In the reconstruction model the
confinement potential is screened when the electron density is not a multiple
of nL. Such regions (ci) are compressible, thus the electron density can vary.
On the other hand, when n = knL, the electron phase is incompressible and
the screening is suppressed. The width of the incompressible stripes depends
on both the gap between the LLs and the local gradient of the electron density.

by Chklovskii et al. for such a width is given by [10]

a2k =
4∆µkε

π2e2dn/dx|x=xk
. (1.9)

For spin-degenerate integer edge channels, where ∆µk = h̄ωc, it becomes:

a2k =
1

2

4h̄ωcε

π2e2dn/dx|x=xk
, (1.10)

where the factor 1/2 incorporates spin degeneracy. Figure 1.4(b) helps the
comparison of the model by Chklovskii et al. (called reconstruction picture)
with the non-interacting model. In the reconstruction picture, the edge
channel is seen as a series of alternating compressible and incompressible
stripes. Within the compressible stripes (CSs) the external electric field is
perfectly screened and the density smoothly varies, while inside the incom-
pressible region the electron density is constant and the external potential
sharply varies.
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It must be stressed that the fundamental ingredient of the reconstruction
picture is the dependence of screening on the local compressibility. There-
fore, we expect that when the density equals a Jain’s fraction, the screening
will be suppressed as well. As a consequence Eq. 1.9 can be generalized to
any (fractional or integer) gap [10]:

a2f =
4∆µfε

π2e2dn/dx|x=xf
, (1.11)

where af is the fractional incompressible stripe width, and ∆µf is the gap in
the chemical potential corresponding to the fractional incompressible phase.
This implies that even the edge of a simple ν = 1 QH system has a non-trivial
structure determined by the fractional incompressible stripes. A signature
of such an inner structure was experimentally found by Kouwenhoven et
al. [3], and discussed theoretically by Beenakker [28] even before the quanti-
tative analysis of Ref. [10]. In their experiment Kouwenhoven et al. showed
that is possible to selectively populate the different fractional components
of a “nominally” single integer edge channel. The occurrence of an edge
reconstruction was suggested also by other experiments [4, 29]. However, a
direct measurement of the spatial details of the inner edge structure has only
become possible recently, and exclusively for integer incompressible stripes,
while information about the fractional components is still missing. Exper-
imental investigations of the spatial details of the edge channels are based
on innovative scanning probe microscopy (SPM) techniques, which will be
discussed in chapter 2.

1.4 Quantum Hall interferometry

The chirality and the absence of backscattering make QH edge channels the
ideal building block for coherent quantum circuits. Examples are the im-
plementation of electron interferometers in Mach-Zehnder [6, 30–32], Fabry-
Pérot [33], and Hanbury-Brown-Twiss [8] configuration. In these fascinating
devices the electron “beam” runs along the confinement potential, which can
be suitably designed by means of Schottky gates fabricated on top of the
heterostructure. Beam-splitters are obtained by defining constrictions in
the 2DEG (the so-called quantum point contacts, QPCs) that allow to co-
herently induce backscattering by reducing the separation between counter-
propagating edge states. QPCs can be realized by negatively biasing two
split-gates in order to deplete the 2DEG underneath. The constriction is
thus defined by the “electrical” gap between the gates. Finally, ohmic con-
tacts are used to inject and remove electrons.

Soon after its demonstration, the Mach-Zehnder interferometer (MZI)
attracted a considerable interest, due to its possible applications to the study
of dephasing and decoherence [34], to the observation of fractional statistics
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Figure 1.5: Sketch of the first electronic Mach-Zehnder interferometer. From
Ref. [6].

of quasi-particles [35, 36] and to the demonstration of their interference [37].
The scheme of an electronic MZI is shown in Fig. 1.5. Electrons are injected
from the source contact S on the left. They propagate along the sample edge
until they reach QPC 1. The bias applied on this QPC is tuned so that
the induced backscattering probability is exactly 50%. The incoming edge
current is then split into two paths, a transmitted inner path and a reflected
outer path. The two coherent components of the electron wavefunction
recombine and interfere at QPC 2. As a result, the two current signals
detected on contacts D1 and D2 oscillate out of phase as a function of the
relative Aharonov-Bohm phase between the two paths. Since there is no
electron loss, the sum of the two signals is constant and equals the total
current injected by the source. The Aharonov-Bohm phase ϕ is given by
ϕ = 2πBA/Φ0, where B is the magnetic field, A is the area enclosed by
the two paths, and Φ0 = 4.14× 10−15 Wb is the quantum of magnetic flux.
Therefore, in order to sweep ϕ one can vary either A or B. A simple way to
control A consists in applying a negative bias to a modulation gate MG in
order to gradually deplete a small portion of the area A. In most experiments
the control of B is obtained by short-circuiting the superconducting coil that
generates the magnetic field. In this kind of superconductors the persistent
current is not strictly constant, but smoothly decays with a rate of about
0.1 mT/h.

The constantly growing flexibility in the practical implementation of QH
circuits stimulates further investigations and different designs, in order to
overcome the intrinsic limitations of the standard MZI architecture. Such
limitations are both practical and fundamental, and are ultimately related to
the MZI topology. From the practical point of view, this design requires an
air-bridge to contact the D2 detector and the inner QPC gates, which makes
the fabrication process more difficult. From a fundamental point of view,
the area A enclosing the two paths must include the etched region containing
the D2 contact. Therefore A cannot be made smaller than several tens of
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Figure 1.6: Scheme of the simply-connected MZI proposed by Giovannetti et
al. in Ref. [9].

square microns, so that a small perturbation in the magnetic field induces
a large fluctuation of the total flux. This can result in a difficult control of
the total flux. Moreover, with this geometry it is difficult to concatenate
more than two devices in series, a possibility that would open the way to the
implementation of a number of scalable devices, and quantum information
architectures.

An alternative, simply connected, MZI architecture was proposed by
Giovannetti et al. [9]. Figure 1.6 shows this design, which is based on the idea
that to avoid a topological hole in the 2DEG it is necessary to coherently mix
two co-propagating (i.e. on the same sample edge) edge channels. The two
components, both propagating from source contact 1b, can be separated by
means of negatively biased Schottky gates that send one of them to an ohmic
contact (1a in the scheme) at a different chemical potential. Thus, when the
two edge channels are put again in interaction, they have an electrochemical
imbalance, whose amplitude is controlled by the applied signal. The beam
splitter BS1 allows electrons to select between two distinct paths, which are
then separated by the modulation gate MG so that they acquire a relative
phase Φ. Carriers are mixed again in BS2 and then sent to two contacts 2a
and 2b.

Except for the beam splitters, all the components of this device are
relatively standard elements for nanofabrication technology. The scatter-
ing mechanisms that allow to coherently transfer electrons between co-
propagating channels are not known in detail. To date, experiments study-
ing the transport between co-propagating channels could only provide in-
formation on the cumulative effect of the processes taking place along the
whole beam splitter length. The need of a spatially resolved investigation
motivated us to apply scanning probe techniques to reveal the source of
inter-channel scattering. These experiments will be described in chapter 4.
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Chapter 2

Scanning probe microscopy
and quantum Hall systems

Progress in nanoscience owes much to the advances in SPM techniques.
The crucial role of the scanning probe technology is witnessed by the Nobel
prize assigned in 1986 to Gerd Binnig and Heinrich Rohrer for the design of
the scanning tunneling microscope (STM). Scanning probe techniques are a
powerful interface to the nanoworld: they allow us to “see” and “manipu-
late” nanostructures, down to the atomic scale. Modern nanoscopy does not
merely target sample imaging, but allows to experimentally probe a broad
range of physical characteristics, e.g. electronic density of states, electromag-
netic near-field profiles, local electrostatic potentials, surface stiffness and
viscosity, local work function, etc. The ability to probe electronic properties
at the nanoscale vastly impacted the investigation of mesoscopic systems.
SPM techniques can directly access and image quantum phenomena (im-
pressive examples are given in Figs. 2.4 and 3.2). The implementation of
SPM setups operating in cryogenic conditions opened the way to their ex-
ploitation to study the QH regime. First SPM developements in this field
aimed at measuring the local electric potential and charge density. The mea-
surement of such quantities on QH systems made it possible to image and
study localized states in the bulk, the Hall potential distribution, the electro-
chemical potential, and the compressibility profile at the sample edge. This
motivated us to combine the experience gained by our quantum transport
group with the opportunities provided by SPM.

In this chapter we discuss advantages and limitations of existing SPM
setups. In particular, in the first section we review the main SPM techniques
applied to the investigation of QH systems, i.e. the single electron transistor
scanning electrometer, the Kelvin probe force microscope, and the scanning
capacitance microscope. Such techniques (developed in the late 90s) allow
to locally measure the Hall potential and electron compressibility, and there-
fore to image edge channels. In the second section, we shall introduce the
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pioneering experiments of scanning gate microscopy (SGM), the technique
exploited for our experiments in the QH regime.

2.1 Imaging quantum Hall systems by scanning
probe microscopy techniques

Single electron transistor scanning electrometer (SETSE)

The single electron transistor scanning electrometer (SETSE) employs the
most advanced probe among SPM techniques. It consists of a specially
shaped glass fiber with a single electron transistor (SET) located at its
tip [38, 39]. The SET is obtained by fabricating two metal leads (source
and drain) onto the glass tip, as sketched in Fig. 2.1(a). The leads are
connected to a small (100 nm) island by two tunnel junctions. The current
ISET tunneling through the junctions displays Coulomb blockade peaks as a
function of the electrostatic potential experienced by the island from external
sources. Since the peaks are sharp, the SET sensitivity is very high. Typical
signal levels are of the order of 0.01e induced on the island. Maps of the
surface potential Vsurf are obtained by scanning the tip over the sample
and simultaneously acquiring ISET . The SETSE spatial resolution is of the
order of the island size, i.e. ≈ 100 nm.

In the QH regime the high sensitivity of the SETSE (100 µV/Hz1/2 [39])
was exploited to probe both localized states in the bulk [40, 41], and edge
states at the sample boundary [39]. The latter can be identified by trans-

0 -984 mV 10

Surface potential Transparency signal

(b) (c)(a)Source

2DEG

Figure 2.1: (a) Sketch of the SET probe suspended over a 2DEG. (b) Map of
the electrostatic potential signal (Vsurf ) corresponding to a pinched-off QPC, in
a 2DEG at νB > 2. The gate biases are 0 V (left gate) and −0.6 V (right gate).
(c) Map of the transparency signal δVsurf/δVBG, where δVBG is the applied
back gate voltage modulation and δVsurf is the in-phase response measured
by the SETSE. Transparent regions correspond to the incompressible stripes
at ν = 2 [39].
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parency measurements, which are sensitive to the local compressibility. Such
measurements require the presence of a back gate underneath the 2DEG.
The compressibility is measured by modulating the back gate voltage VBG by
a small amount δVBG. The surface voltage variation δVsurf measured by the
SETSE depends on the local screening properties of the sample. The local
compressibility κ can be extracted from the relation δVsurf/δVBG = C/eκ,
where C is the capacitance between the 2DEG and the back gate. Fig-
ure 2.1(c) shows the transparency map of a 2DEG constriction defined by
two T-shaped gates, which can be recognized in the Vsurf plot in Fig. 2.1(b).
The transparency map reveals compressible and incompressible phases of the
2DEG, whose bulk filling factor is slightly higher than 2. The incompress-
ible regions (high transparency signal) appear as stripes that meander across
the image. As discussed in section 1.3 these structures are the fingerprint
of edge reconstruction. The resolution of the SETSE maps allows one to
image the edge trajectory, but is not sufficient to measure edge width or to
reveal its inner structure, whose size is of the order of the magnetic length
(≈ 15 nm).

Kelvin probe force microsopy (KPFM)

The local voltage of mesoscopic structures can also be measured mechan-
ically, i.e. by an atomic force microscope (AFM) operating in non-contact
mode. Figure 2.2(a) shows the typical setup for measurements in the QH
regime: an AC potential V0, oscillating with frequency ω0, is applied to the
source contact. It modulates the 2DEG electrochemical potential µac(x, y) ≡
eVac(x, y), whose spatial distribution is to be measured. The local sample
potential Vac(x, y) electrostatically interacts with the sharp, metallized AFM
tip, deflecting the biased AFM cantilever with a force that can be modeled

(a) (b) (c)

Figure 2.2: (a) Scheme of KPFM measurement [42]. (b) Hall potential dis-
tribution near a probe contact for bulk filling factor νb = 2. The Hall potential
drop is distributed along the whole sample width. (c) For filling factor νb = 2.1
the Hall potential drops only at the sample edges, due to the effective screening
of the compressible bulk [43].
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as

F =
1

2

dC

dz
[(Vdc − VCPD) + Vac(x, y) sin(ω0t)]

2, (2.1)

where C is the tip sample capacitance, z is the tip sample separation, Vdc is
the tip bias, and VCPD is the contact potential between sample and tip. F
has three components:
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4

dC

dz
V 2
ac(x, y) cos(2ω0t). (2.2)

The first and second harmonics Fω0 allow one to determine Vac(x, y), the
local electrostatic potential in the sample. This SPM technique is called
Kelvin probe force microscopy (KPFM). It offers several advantages with
respect to SETSE. First of all, it employs a much simpler and sharper probe,
which ultimately yields sample topography with higher resolution. Moreover,
one can obtain both VCPD(x, y) and Vac(x, y) maps. VCPD is obtained by
applying a feedback system on the tip bias in order to null the first harmonic
(i.e. the term (Vdc−VCPD)), while Vac is given by the second harmonic signal.
Finally, the KPFM voltage sensitivity (10 µV/Hz1/2 [42]) is about 10 times
more accurate than in the SETSE [39, 42].

Panels (b) and (c) of Fig. 2.2 depict the experiment by Ahlswede et
al. [43]. In this experiment the KPFM was used to image the Hall poten-
tial in the vicinity of an ohmic contact of a Hall bar. The measurement of
the local Hall potential is a simple way (and an alternative to transparency
measurements) to visualize edge channels. Due to their finite capacitance,
an imbalance between counter-propagating edge channels produces a charge
pile-up at the sample boundary that can be revealed by KPFM. Although
the resolution of this technique (about 200 nm) is not sufficient to resolve
individual incompressible stripes, it does visualize the effect of electron in-
teractions.

Scanning capacitance microscopy

Scanning capacitance microscopy (SCM) is closely related to the KPFM
technique. Indeed, the same setup can be used either for Kelvin probe
or scanning capacitance measurements. SCM operation is schematically
sketched in Fig. 2.3(a). A sharp conducting tip is positioned 5 nm above
the sample surface and connected to a highly sensitive charge detector. An
AC excitation voltage is applied to the 2DEG through an ohmic contact
(2 mm away from the tip). No other contacts are made to the sample. The
excitation causes charge to flow in and out of the 2DEG, which in turn
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Figure 2.3: (a) Diagram of the SCM measurement configuration [44]. The
SCM setup (b) can be represented by a RC circuit whose scheme is shown
in (c). (d–f) 13 µm×13 µm SCM scans (in-phase signal) for (d) B = 8.0 T,
(e) B = 8.1 T, and (f) B = 8.2 T. (g–i) Out-of-phase SCM signal for (g)
B = 8.0 T, (h) B = 8.1 T, and (i) B = 8.2 T [45].

induces charge to flow in and out of the tip. By scanning the tip and using
synchronous lock-in detection of the induced charge, one obtains a map of
the charge accumulating in-phase (Qin) with the excitation.

SCM allows to directly (i.e. with no need of a back gate) measure the
local compressibility: in fact, when the tip is scanning an incompressible re-
gion, the SCM signal is zero, since these regions do not accumulate charge or
conduct electricity. As a consequence SCM can probe reconstruction of inte-
ger edge channels. Figure 2.3(d–f) shows the results of SCM measurements
on an intentionally induced charge perturbation1 in a 2DEG with filling fac-
tor near ν = 2. The three panels on the left show the in-phase signal with
B = 8.0 T, 8.1 T, and 8.2 T (νb = 2 for B = 7 T). Dark areas can be in-
terpreted as 2DEG regions with reduced compressibility. They correspond
to the incompressible stripe at ν = 2 separating the bulk (νb < 2) from
the spot center (ν > 2). In such regions the 2DEG below does not charge
and discharge with the weak AC excitation. The lock-in technique allows to
simultaneously acquire the out-of-phase SCM signal as well (Fig. 2.3(g–i)),
which gives additional information about the conductivity of the 2DEG. In
fact, the SCM setup can be approximately described as a RC circuit, as
sketched in Fig. 2.3(b,c). Moving the scanning probe toward the regions
in the interior of the incompressible stripe increases the effective resistance.

1The charge parturbation has been induced by holding the tip in a given position and
applying approximately +3 V for 30 s.
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This causes the measured in-phase signal to steadily decrease to zero, while
the out-of-phase signal first increases from zero, reaches a maximum for
ω = (RC)−1, and then decreases back to zero level.

SETSE, KPFM, and SCM allowed a first direct and spatially resolved
analysis of integer incompressible stripes. They unambiguously demonstrate
the modulation of the electron compressibility induced by interactions. The
resolution of such methods, however, is not sufficient to obtain quantitative
information about the size of the stripes. More “quantitative” measure-
ments [46] became recently possible thanks to the significant leap in the
resolution provided by the SGM technique.

2.2 Scanning gate microscopy

The SPM techniques discussed so far aimed at reducing as much as possible
the influence of the tip, in order to probe to the best possible approximation
the unperturbed electron system. The principle of operation of the SGM is
in some sense opposite, since it uses a conductive AFM tip to intentionally
perturb the electrons in order to measure the resulting effect on transport
properties.

The development of SGM for the investigation of high mobility 2DEGs
was pioneered by the Harvard group in the early 2000’s [47, 48]. In their
experiments they raster-scanned a negatively charged tip above a QPC and
simultaneously measured the position-dependent conductance of the device.
The negative tip bias creates a depletion spot in the 2DEG, which is used
as a movable scattering center to reflect electrons flowing through the QPC.
The split-gates of the QPC are biased in order to confine electrons in the
transverse direction, and thus conductance plateaus for multiples of 2G0

are observed. This step is needed to focus the electrons, so that the tip
can effectively scatter them back through the QPC. This effect is visualized
by plotting the reduction of the trasmitted conductance as a function of
tip position. The result is spectacular, as shown in Fig. 2.4. When the
tip is scanned over regions with high current density, the conductance is
significantly reduced, while in other regions it remains essentially unchanged.
In this sense, SGM maps allow to visualize the actual electron flow.

The interpretation of SGM maps is different for scans near the QPC and
for those far from it. In the former case, SGM scans correctly reproduce
the electron wavefunction determined by the QPC potential. As shown
in Fig. 2.4(b) [47], due to the confinement in the transverse direction, the
wavefunction has a lobe structure. The number of lobes depends on the
“effective” size of the constriction. In the absence of disorder, one would
expect a regular broadening of the lobes in the regions far from the QPC
center. On the contrary, the SGM maps reported in Fig. 2.4(c,d) reveal
that the electron flow forks into several different paths, which continue to
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Figure 2.4: (a) Scheme of the SGM setup. The transmitted QPC conductance
is measured as a function of the tip position [47]. (b) Map of the change ∆G
in the transmitted conductance induced by the tip when scanned over the
region near the QPC, which has been set to the third conductance plateau
(G = 6G0) [47]. (c) Image of the branched electron flow from one side of a
QPC, biased on the first conductance step. Areas where the conductance is
significantly changed by the the presence of the tip correspond to the regions
of high electron flow. Due to the disorder potential, the electron trajectories
form caustics, which are revealed as branches. In particular, a dip in the
potential generates a cusp downstream, one of which is indicated by the arrow.
The branches display clear fringes, whose spacing is λF /2. Such fringes are
due to the intereference between indistinguishable events (electrons can be
backscattered either directly into the QPC, or after being reflected from the
split-gate potential) [48]. (d) Electron flow imaged from both sides of a different
QPC [48].
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branch off into ever smaller sub-branches for the full width of the scan.
This peculiar branching phenomenon actually depends on the landscape
of the disorder potential. The amplitude of most potential fluctuations is
significantly smaller than the Fermi energy, so that the disorder perturbs the
electron trajectories rather than directly backscatter them. In particular,
potential valleys act like lenses that focus the electron paths, giving rise to
cusps. One example of such a cusp is indicated by the arrow in Fig. 2.4(c).
Due to the cumulative effect of all the small-angle scattering events induced
by potential modulations, electron trajectories tend to accumulate and form
caustics, which are revealed as branches [49].

The ability to backscatter electrons even for large (several microns) tip-
QPC distances crucially depends on the fact that the motion is ballistic:
electrons adiabatically follow time-reversed paths from the depletion spot
to the QPC. In the diffusive regime the effect of the tip would be scarce and
rather insensitive to position. The mean free path of electrons can thus be
approximated as twice the length of the branches: in this example around
2 µm.

The presence of fringes decorating the branches reveals that the process
is coherent. These patterns are interpreted as the result of the sum of quan-
tum amplitudes for two indistinguishable events: electrons can be reflected
directly back into the QPC, or backscattered by the split-gate potential,
then again by the tip potential and finally reflected into the QPC.2 By mov-
ing the tip for a distance of λF /2, the phase change for the former event
increases by about δφ1 = 2π (since the total path length increase is λF ).
For the latter event the phase change is δφ2 = 4π, so that the relative phase
difference is δφ2 − δφ1 = 2π, i.e. the fringe periodicity is exactly λF /2.

2This effect is quickly suppressed as the number of reflections increases. Therefore,
events with more reflections can be neglected to first approximation.



Chapter 3

Imaging edge-channel
structure by scanning gate
microscopy

Apart from the few examples discussed in chapter 2, the physics of QH edge
channels was almost exclusively investigated by transport experiments. De-
spite the crucial role played by this kind of measurement in revealing the
properties of these chiral 1D electron systems, very little information was
obtained about the spatial features of the edge channels, and their inner
structure. As discussed in the previous chapter, recently-developed low-
temperature SPM techniques open the way to a deeper-than-ever investi-
gation of spatial features of edge systems. Due to their resolution limits,
however, these techniques could not reveal the inner structure of a single
edge. As shown in section 1.3, the reconstruction picture predicts the oc-
currence of a series of compressible and incompressible stripes even within
a single edge, due to the fractional QH effect. In this chapter we shall show
how the SGM technique can be exploited to directly image both integer
and fractional components of edge channels. The high spatial resolution
provided by the SGM will allow us to quantitatively estimate, for the first
time, the width of fractional incompressible stripes for the filling factors 1/3,
2/5, 3/5 and 2/3.

3.1 Experimental SGM setup

The SGM measurements shown in the present work were performed with
an Attocube LT-SYS/He system. In this setup, the cryostat is inserted in
a liquid helium (LHe) reservoir which is suspended by means of springs in
a soundproof box, in order to damp vibrations induced by the lab floor
and acoustical noise. The cryostat is a 3He closed cycle refrigerator that
can reach a base temperature of 300 mK at the cold finger. The dewar is
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(a) (b) (c) 

(d) 

Figure 3.1: (a) AFM head. The stack of its modules is visible in both the
top and the bottom part of the shell. These components can be better seen by
dismounting the titanium body of the AFM. (b) The bottom part contains the
Z coarse positioner and the tuning fork (TF) stage. (c) The top part contains
the X and Y coarse positioners, the piezo scanner, the sample thermometer
and the sample holder. (d) A CCD picture of the TF+tip system, acquired
during a scan on a Hall bar.

equipped with a superconducting coil which provides magnetic fields up to
9 T. The AFM head (shown in Fig. 3.1(a)) is directly connected to the cold
finger. The head is made by two stacks of elements mounted onto the half
shells of a titanium body. The elements of the AFM are:

• Coarse positioners: three inertial actuators move the sample (X and
Y positioners) and the tip (Z positioner) for long distances (5 mm)
with a step precision of the order of 300 nm.

• Scanner: a piezoelectric ceramic actuator accurately moves the sample
in all three directions.

• Thermometers: a RuO2 resistive thermometer is placed just under the
sample holder.

• Sample holder: a 20-wire chip-carrier holder connects the sample pins
to the cryostat cables via pogo-pin connections.
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• Tuning fork (TF) system: this element contains a metallic base with
a dither piezo that excites mechanical vibrations, on which a printed
circuit board is mounted with the TF together with the electronic
components of the first amplification stage of the TF signal. The
instrument is operated in non-contact tip-sample shear force mode.
Sample topography is obtained by controlling the tip height in order
to keep the TF oscillation amplitude constant.

Samples for SGM measurements are mounted on chip-carriers, such as
the one shown in Fig. 3.1(c). In order to find the desired structure, we move
the tip with respect to the sample by means of coarse positioners, using a
CCD camera to visualize their relative position. The CCD camera allows
to find the relevant sample structure with an error of the order of 50 µm.
Then, we start the approach procedure, which is completed when the TF
signal senses the surface. Subsequently, we locate the nanostructure under
investigation using a coordinate pattern fabricated on the sample. AFM
topography allows to locate the position of the scanned area, and thus to
determine how many coarse steps in both X and Y direction are required
to center the scan range on the desired device. Finally, we acquire the de-
vice topography to check its conditions, surface quality, and tip resolution.
After these preliminary tests at room temperature, the tip is retracted ap-
proximately 500 µm away from the surface, and the sample chamber of the
cryostat is evacuated and immersed in the LHe dewar for low temperature
measurements. When the desired base temperature is reached, the tip is
again approached to the sample. The cooling process typically induces an
in-plane drift of the tip relative to the sample of the order of 50 µm, thus a
further positioning step is needed. Again, the coordinate pattern is used to
locate the device. For this reason, the coordinate spacing (5 µm) is chosen
to be smaller than the low-temperature scan range (8.5 µm and 30 µm for
the two scanners used).

3.2 Measurements at zero magnetic field

Though the goal of the present work is the spatially-resolved investigation
of QH edge channels, our first experiments focused on a constriction in
a high mobility 2DEG at zero magnetic field. There are two reasons for
this choice. On one hand, as seen in section 2.2, constrictions in 2DEGs
were investigated by Topinka et al. [47, 48]: we exploited their results as a
reference to both validate our setup and characterize our samples. On the
other hand, the same device provides a structure that allows to explore new
physics by simply applying a high magnetic field, as we shall show in the
next section.

As pointed out in chapter 1, the physics of the QH effect emerges in
high mobility samples. All samples reported in this thesis were fabricated
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starting from high mobility GaAs/Al0.33Ga0.66As heterojunctions. For the
experiments reported here we used two samples (labeled as A and B): sample
A had a 2DEG buried 80 nm underneath the surface, with an electron sheet
density nA = 1.77× 1011 cm−2 and a mobility µA = 4.6× 106 cm2/Vs. The
2DEG depth, the electron density and mobility for sample B were 80 nm,
nB = 3.2 × 1011 cm−2, and µB = 2.3 × 106 cm2/Vs, respectively. The
device scheme for both samples is the same as the one shown in Fig. 2.4(a).
A Hall bar structure with ohmic contacts was defined by UV lithography,1

while split-gates with a gap of 300 nm were fabricated by electron beam
lithography.

After locating the device as explained in the previous section, we ac-
quired the topography of the split-gate center, which is the reference that
allows to pinpoint the structures observed in the SGM maps. Then, another
topography scan allowed us to determine the average surface plane, which is
parallel to the 2DEG plane. Such preliminary scans were performed by keep-
ing both gates and the tip grounded, in order to avoid a short that could
potentially destroy the split-gates. Then, the tip was lifted 10 nm above
the surface and biased to Vtip = −5 V. Split-gates were biased in order to
set the QPC to a conductance plateau (so that the transmitted conduc-
tance GT is a multiple of 2G0). SGM conductance maps were obtained with
the negatively biased AFM tip scanning two regions on either the left or
the right side of the QPC, while simultaneously measuring the transmitted
source-drain current. This was done using a current preamplifier in a two-
probe configuration. Contact resistances were subtracted numerically. The
SGM map in Fig. 3.2(a) was taken with the QPC of sample B set to the
third conductance plateau (GT = 6G0). It shows the change in conductance
∆G = (ISD/VSD)− 6G0 (where VSD and ISD are the source-drain bias and
current, respectively) as a function of the tip position in the two scanned
areas. Figure 3.2(b) shows an analogous SGM scan on the left side of the
QPC on sample A. In this scan the QPC is set to the second conductance
plateau, so that the signal shown in Fig. 3.2(b) is ∆G = (ISD/VSD)− 4G0.

Panels (a) and (b) of Fig. 3.2 show the characteristic electron branching.
Branches extend over a length scale of about 5 µm due to the high mobility
of the 2DEG. The fringes decorating these structures are separated by half
the Fermi wavelength, consistently with the results of Ref. [48]. This can be
better seen in Fig. 3.2(c), which shows a zoom-in on one of the branches.
The inset shows a high-resolution image of the area indicated by the dashed
rectangle. The interference fringes between time-reversed electron paths are
clearly resolved. The interferometric nature of such structures can be easily
verified by breaking the time reversal symmetry: when a small magnetic
field (1 mT) is applied, all fringes are washed out (see Fig. 3.2(d)). As
already pointed out by Aidala et al. [50], the magnetic field also affects the

1Details of the nanofabrication process are given in Appendix C.
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Figure 3.2: (a) Characteristic branched flow observed in zero-field SGM mea-
surements (tip bias Vtip = −5 V, QPC transmission GT = 6G0) on sample B.
The image shows the change in conductance ∆G as a function of tip position.
The dark regions in the color plot (low conductance) correspond to the actual
electron paths and depend on the details of the local potential. The fringes
which decorate the branches are a signature of the electron phase coherence.
The center part of the image shows a scanning electron microscopy image of
the QPC. (b) SGM scan on sample A. The scan was performed on the left
side of the QPC, that was set to the second conductance plateau. The two-
lobe structure near the QPC is due to the presence of a quantum dot. (c)
High-resolution image of the upper-left branch in panel (b). The inset shows
a magnified image (500 nm× 300 nm) of the area indicated by the dashed
rectangle. (d) The same scan has been repeated applying a small magnetic
field (5 mT). The breaking of the time-reversal symmetry destroys both the
branches and the fringes observed for zero field.

electron-flow pattern: electrons can no longer return to the QPC in a time-
reversed path, and therefore the SGM image shows constant conductance,
independently of tip position.

SGM scans are also sensitive to the presence of charge islands near the
QPC that behave as quantum dots. Such islands are portions of the 2DEG
that become isolated when the electrostatic confining potential of the QPC
is increased relatively to the Fermi level. Such islands provide an additional
channel for electron transmission. The effect of the tip is the same as that
of a plunger gate in quantum dot devices [51]. Since the change in the
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electrostatic potential induced by the tip on the dot depends on the tip-dot
distance, the effect of Coulomb-blockade oscillations of the dot manifests
itself as concentric rings in SGM maps.

3.3 Measurements in the integer QH regime

The possibility to bring the QPC into the QH regime opens the way to the
investigation of novel features. In particular, the same device used to observe
branched electron flow was exploited to implement a selector for edge chan-
nels, while the SGM tip was used to control their trajectory and backscat-
tering probability. The idea of this experiment is sketched in Fig. 3.3. The
bulk filling factor was set to νb = 4 (B = 3.125 T, h̄ωc = 5.4 meV). At this
magnetic field the Zeeman gap is so small that we cannot clearly resolve
spin-split edge channels. We shall thus neglect the spin and consider pairs
of spin-split edges as individual channels carrying 2G0 units of conductance.
The upper (lower) split-gate is negatively biased in order to set the under-
lying filling factor to gu (gl). The tip potential can be used to shift the
edge position, tune the separation between the counter-propagating edge
channels, and enhance backscattering.

We performed SGM measurements in different edge channel configura-
tions. For instance, when the gate filling factors are set to gi = 0, both
edge channels reach the QPC center, while for gi = 2, only one channel
is deflected, whereas the other one propagates undisturbed under the gate.

 ν
  
= 4b

 g = 2
u

 g = 2
l

Figure 3.3: Sketch of the experiment. For bulk filling factor νb = 4, the
source-drain current is carried by two pairs of spin-degenerate edge channels,
that can be selectively sent to a QPC by means of split-gates. The negatively-
biased tip allows to tune the interaction between the counter-propagating
edges. SGM maps are obtained by acquiring the source-drain conductance
value at each tip position.
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There are four (gu, gl) configurations of interest for our SGM measurements.
Figure 3.4 shows the conductance map as a function of the position of the
biased SGM tip (Vtip = −5 V) for each (gu, gl) combination. Since in these
measurements the scan area overlaps the split-gates (whose position is in-
dicated by the dashed grey line in Fig. 3.4), we increased the tip height to
30 nm to avoid tip-gate shorts.

Figure 3.4(a) refers to gate–region filling factors gu = gl = 0. For large
tip-constriction distances the SGM signal reaches the full transmission value
4G0 (where G0 ≡ e2/h). When the biased tip is brought close to the QPC,
pairs of edge channels are backscattered one by one, and the conductance
through the QPC decreases in a step–like manner to 0. This demonstrates
the gating action of the tip in the QH regime. Similar results were ob-
served by Aoki et al. [46] in InAlAs/InGaAs etched heterostructures with
a symmetric-edge configuration. Panels (b), (c), and (d) of Fig. 3.4 show
the same measurement repeated for gate configurations (gu, gl) set to (0,2),
(2,0), and (2,2), respectively. In (b) and (c), one of the two edge channels,
rather than being sent to the QPC center, propagates under the split-gate
along the mesa boundary. These scans demonstrate that it is impossible
to backscatter more than one quantum of conductance (here 2G0) when
only one channel is present at the counter-propagating edge. After the first
edge is backscattered, conductance does not decrease anymore. The con-
ductance is thus constant in the whole central region, exactly as expected
when gu = gl = 2 (panel (d)).

As already discussed, the small value of the Zeeman energy does not allow
to resolve spin-split edge channels, i.e. to observe a well-defined plateau at
GT = nG0, with n an odd integer. One can nevertheless identify traces of
the spin-splitting by observing the cross sections in Fig. 3.4, which show
shoulders for GT = G0 and GT = 3G0.

The crucial result of this experiment is the clear and well-resolved ob-
servation of a plateau in the GT map. Such a feature is strictly related to
the reconstructed edge structure. In order to elucidate this point, we show
in Fig. 3.5 the self-consistent energy dispersion within the QPC. In panel
(a), the confinement potential is wide enough to allow full transmission:
the filling factor at the QPC center is the same as in the bulk, i.e. there
is an incompressible phase separating the two counter-propagating chan-
nels. Electron backscattering is thus suppressed. It can be “switched on”
if tunneling between counter-propagating compressible stripes (A and C in
Fig. 3.5(a)) is enabled. To this end, it is necessary to reduce the width
of the QPC potential, until the compressible stripes merge at the center
(Fig. 3.5(b)). If the QPC potential width is further reduced, the central
compressible region shrinks and the backscattered current accordingly in-
creases. When the width of the compressible region is reduced to zero, an
incompressible phase occurs at the QPC center, which separates the two
counter-propagating edges. Backscattering is again suppressed, so that a
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Figure 3.4: QPC conductance GT as a function of the position of the biased
SGM tip. The (bulk) 2DES filling factor is set to νb = 4 (2 spin–degenerate
edge channels; B = 3.04 T) while the QPC gates partially or completely deplete
the 2DES underneath. The gate–region filling factors are (gu, gl) = (0, 0) in
(a), (0, 2) in (b), (2, 0) in (c), and (2, 2) in (d). The top row shows sketches
of the edge channel trajectories, the center row the SGM conductance images,
and the lower row cross sections through the images along the vertical lines
drawn in the images. The QPC outline as measured by AFM is indicated by
the dashed lines.
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Figure 3.5: (a) Self-consistent edge dispersion in the QPC. The existence of an
incompressile phase (B) at the QPC center prevents electron backscattering.
(b) When the constriction is shrunk, two counter-propagating compressible
stripes (A and C) merge at the center, so that backscattering is enabled. The
width of the QPC potential can be reduced either by decreasing the split-gate
voltage, or by moving the negatively-biased SGM tip.

plateau in the conductance is observed until we merge the next two adja-
cent compressible stripes. The width of the measured conductance plateau
correspond to twice the incompressible stripe width δIS , as discussed in
detail in Appendix B.

The QPC potential width can be reduced either by decreasing the split-
gate voltage, or by moving the negatively-biased SGM tip. The advantage
of the latter method is twofold: on the one hand, it allows to directly relate
the spatial extent of the edge stripes with the plateaus in the SGM maps, on
the other, it allows to exploit a statistical analysis to emphasize the presence
of conductance plateaus. Such analysis consists in counting the occurrence
of each value of GT in the SGM map and plotting it in a histogram. The
presence of a plateau implies that the corresponding GT value is found more
often in the SGM image, and therefore a peak is observed in the histogram.
The histogram analysis of the SGM map of Fig. 3.4(a) is shown in Fig. 3.6.
The occurrence of extremely sharp peaks for even filling factors demonstrates
the validity of this analysis method. Histograms also provide a clear and
reproducible way to estimate the plateau width. To this end, we selected
the range of GT values that are located within the FWHM of each peak
in the histogram. The regions in the SGM maps, whose corresponding GT
values lie within this range, belong to the plateau. Plateau widths are thus
obtained by taking the average width of such regions. This method can
only be applied to plateaus with 0 < GT < νbG0. In fact, the plateaus
corresponding to GT = νbG0 and GT = 0 indefinitely extend in the bulk
2DEG and in the depletion region, respectively. By applying this method
to the scan in Fig. 3.4(a) we obtain 2δIS = 42 nm.

In order to compare these values with the predictions of the reconstruc-



38 3.3. Measurements in the integer QH regime

0 1 2 3 4
0

5 0

1 0 0

1 5 0

2 0 0

 

 

co
un

ts

G T  ( e 2 / h )

Figure 3.6: Histogram of the occurrences of each GT value in the SGM image
of Fig. 3.4(a). Peaks in the histogram emphasize the presence of plateaus at
specific values of GT . The peak width defines a range of GT values, which
corresponds to the plateau width.

tion picture, however, it is necessary to estimate the local electron density
gradient close to the IS. In the reconstruction picture, the square of the
width of the IS is proportional to the energy gap between the edge states
and inversely proportional to the gradient of the electron density function.
SGM scans allow to estimate the latter value by measuring the slope of GT
near the plateaus. In fact, when the tip is near a plateau, it induces a com-
pressible phase at the QPC center, whose local filling factor is νc = GT /G0.
We are interested in determining dn/dr, where n is the electron density, and
dr is the increment along the radial coordinate, which corresponds to one
half of the tip displacement δrt = 2dr. Therefore we have

dn

dr
=
nLδνc
1
2δrt

= 2nL

(
1

G0

δGT
δrt

)
, (3.1)

where nL is the Landau level degeneracy, and the quantity in brackets is the
slope of GT in the SGM maps.2 By inserting the electron-density gradient
and the LL gap (h̄ωc = 5.4 meV) in Eq. 1.9 we obtain a plateau width
2δIS = 2× 28 nm=56 nm. The agreement with the value directly extracted
from the SGM scan is good, and validates the approximations made.

Figure 3.7(a) shows a SGM measurement on another device (sample A)
at bulk filling factor νb = 6 (B = 1.22 T). The tip and the split-gate bias
are set to Vtip = −3 V, and Vg = −0.35 V, respectively. In this case, when

2The method we used to extract this quantity from the SGM maps is described in
detail in Appendix B.2.
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Figure 3.7: Map of the source-drain zero-bias conductance GT as a function
of the position of the tip with respect to the split-gate (dashed line), in a
QH system at νb = 6. When the biased tip (Vtip = −3 V) approaches the
QPC center, individual channels are selectively backscattered, and a series of
compressible/incompressible stripes becomes visible.

the split-gate filling factors (gu, gl) are set to (0,0), two finite plateaus are
visible.

Figure 3.7(b) displays the conductance curve corresponding to the light
blue line in Fig. 3.7(a). This plot clearly demonstrates the presence of
plateaus when GT equals multiples of 2G0. In this case, the resulting plateau
widths are 2δIS = 15 nm for GT = 2G0 and 2δIS = 42 nm for GT = 4G0.
The predictions of the reconstruction model [10] are 2δIS = 32 nm and
2δIS = 47 nm, respectively. While the latter turns out to be in good agree-
ment with the measured value, the former is rather larger. This difference
might be explained by considering that the IS width in this case is not neg-
ligible with respect to that of the two neighboring compressible stripes, in
contrast with the fundamental assumptions made in Ref. [10].

3.4 Imaging fractional stripes in integer channels

The existence of fractional order within integer QH systems is suggested by
a number of transport measurements. These indications led Beenakker to
model the integer edge as if composed by a set of independent edge channels
that can be selectively populated and detected. This behavior was at odds
with the first edge models proposed by Halperin [11], where every integer
Landau level in the bulk gives rise to a chiral edge mode which has no
internal structure and can be described in terms of single-particle physics.
The missing ingredient – electron-electron interaction – enters as a quite
complex agent within this context: it can lead to non-perturbative effects,
such as the emergence of fractional QH edge substructures, as suggested by
Beenakker [28]; it is known to perturb the edge profile due to gap – and thus
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density – dependent screening effects which lead to extended compressible
and incompressible stripes, as shown by Chklowskii [10].

Despite the many experimental and theoretical studies, the key issue
of fractional order within integer QH systems has not been clearly settled
yet. While a number of experiments showed clear indications of fractional
phases in constrictions, either in terms of fractional quantization of con-
ductance [3, 4] or Luttinger-like non-linear features [24–27], many issues
remain open, and even the simple problem of how an ideal integer edge
might “branch” and give rise to fractional edges remains unclear. Notably,
recent experiments of interferometry [6] and out-of-equilibrium energy spec-
troscopy [52] demonstrated that an integer edge can behave as a monolithic
object with no evidence of an inner structure. Whether such dual behavior
depends on the specific device structure or is intrinsic, remains an unan-
swered question. Finding experimental indications is complicated by the
fact that fractional features are often difficult to spot in a clear way, due
to the inevitable random variability of real devices: fractional conductance
quantizations steps, for instance, can be easily masked by disorder or reso-
nances.

In the previous section we saw that SGM measurements on QPCs are
a valuable tool to observe the spatial details of integer edge channels with
rather high resolution, compared to other scanning probe techniques. In this
section we show how the same setup can be exploited to reveal fractional
structures within a single integer channel. The visibility of such structures
critically depends on sample quality, so that they could not be observed
in previous SGM experiments performed with samples with lower mobility
(InAlAs/InGaAs) [46]. The devices used in this experiment are fabricated
starting from two heterostructures: sample (C) has a 2DEG depth DC =
80 nm, a carrier density nC = 1.99× 1011 cm−2, and a dark mobility µC =
4.5 × 106 cm2/Vs. The corresponding values for sample (D) are DD =
100 nm, nD = 2.11× 1011 cm−2, and µD = 3.88× 106 cm2/Vs.

Figure 3.8(a) shows a SGM measurement on a QPC on sample C in the
QH regime at bulk fillig factor νb = 1 (B = 8.23 T). The split-gate voltage
is set to Vg = −0.30 V, which allows to set the filling factor underneath
to ν = 0 without inducing backscattering between the counter-propagating
edges inside the constriction (transmission of the QPC t = 1). Figure 3.8(a)
is a map of the transmitted source-drain differential conductance GT as a
function of the tip position, with a bias Vtip = −6 V applied to the tip.
Similarly to the scans shown in Fig. 3.4 and 3.7, when the distance between
tip and QPC center is gradually reduced, backscattering is enhanced and
GT decreases. This measurement is aimed at searching for the occurrence
of fractional incompressible phases, that should show up as plateaus in the
SGM scans, exactly as for the integer IS. On the right side of Fig. 3.8(a), we
show a blow up of the 50 nm×150 nm region corresponding to the dashed
rectangle. From the contour-line density we can recognize a shoulder cor-
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Figure 3.8: (a) SGM scan at the center of a QPC in a νb = 1 QH system.
The map shows the GT values as a function of the tip position, together with
contour lines at constant GT . On the right, a zoom of the 50× 150 nm region
corresponding to the dashed rectangle is displayed. (b) Profile of GT along the
light blue line in (a), together with its derivative.
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Figure 3.9: Graph of the average occurrence of each GT value within 9
different SGM scans performed at different Vtip values. Peaks for GT = 1/3,
2/5, 3/5, and 2/3 are visible.

responding to a plateau for GT = 1/3G0. This plateau can be directly
observed in Fig. 3.8(b), where we show the conductance profile acquired
along the light-blue line in Fig. 3.8(a), together with its derivative. From
the half-width of the minimum in the derivative we can estimate the width
δIS of the fractional IS and obtain approximately 12 nm.

Figure 3.9 shows the graph resulting from the averaging of 9 histograms
extracted from SGM scans performed at different tip voltages (Vtip from
−7.5 to −3.5 V). Peaks for GT = 1/3, 2/5, 3/5, and 2/3 are clearly visible.
Such values correspond to the most relevant fractions (1/3 and 2/5) together
with their symmetry conjugates (2/3 and 3/5). Similar measurements were
performed on six samples, and at least the 1/3 peak was always clearly
visible. The amplitude of the different peaks reflects the relative robustness
of the fractions, e.g. in Fig. 3.9 the 1/3 peak is three times larger than the 2/5
peak. The averaging procedure allowed us to sample the whole conductance
range from 0 to 2/3G0. In fact, in scans with high Vtip, the higher GT
values lie outside the scan area. Vice-versa, in scans with low Vtip, GT is
higher than 2/5G0 even at the QPC center. SGM scans allow to greatly
enhance even weak structures because they provide much more information
than a single sweep of the split-gate potential. Even though weak structures
cannot be easily recognizable in a single sweep, they become evident in a
histogram graph, where all spurious structures are averaged out. It is also
important to notice that the ability to resolve thin stripes is due to the high
spatial resolution provided by the SGM technique, compared to scanning
force or scanning capacitance microscopy [39, 42–44, 53, 54]. As discussed
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Figure 3.10: Plots of the occurrences of GT values for two SGM scans per-
formed at 300 mK (red curve) and 4.2 K (blue curve), on a QPC fabricated on
sample C. The increase of temperature completely washes out the fractional
IS, so that the 1/3 peak disappears.

in detail in chapter 2, here the resolution is only related to the accuracy of
the piezo scanner that controls the tip-sample position, which is of the order
of 0.1 nm. Even though the width of the electrostatic potential induced by
the tip is relatively large (typically more than 100 nm), what matters here
is how accurately the equipotential contour is moved, i.e. the precision of
the lateral displacement of the edge.

Figure 3.10 shows the impact of temperature on the visibility of fractional
peaks, measured on a QPC fabricated on sample D. While at 300 mK a peak
for GT = 1/3G0 is clearly observed, at a base temperature of 4.2 K the 1/3
peak completely disappears, and the curve become featureless. This is con-
sistent with the picture of an incompressible stripe originating from the con-
densation of fractional quasi-particles with an excitation gap ∆1/3 of the or-
der of 1 K (≈ 100 µeV), as estimated from tunneling measurements on sam-
ples with similar characteristics [27]. This value is also consistent with recent
magnetocapacitance experiments [55] that measured a chemical potential
jump across the fractional gap of the order of ∆µ1/3 = 3∆1/3 ≈ 400 µeV
at 0.5 K. The fractional gap is rapidly suppressed as the temperature in-
creases [55], so that at 4.2 K almost all the quasi-particles are excited, there-
fore screening is effective and compressibility increases.

As discussed before, the histogram in Fig. 3.9 allows to define the range
of values of GT which correspond to a certain plateau by taking the FWHM
of each peak. These intervals of GT correspond to a stripe in each SGM
map, whose average width is a good approximation of the fractional plateau
width. By applying this procedure to all SGM scans, we can extract the
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Figure 3.11: For each fraction reported in this section, we show δIS measured
for different Vtip values (color spots) together with the values expected from
Chklovskii’s formula assuming ∆µf = 260 µeV (black squares).

value of δIS of each fractional IS. These values are consistent with those
obtained from a direct estimate of the plateau width (see Fig. 3.8(b)). In
order to compare these values with the predictions of the reconstruction
picture, we used the method discussed in Sect. 3.3 for the integer IS case.
We estimated the electron density gradient by Eq. 3.1 and we inserted it
in Eq. 1.11. Figure 3.11 shows, for all the observed fractions, a comparison
between the values directly extracted from the SGM map and those deduced
from Eq. 1.11, for each value of Vtip. Both the absolute values and the
trends of the reconstruction model predictions are in good agreement with
the experimental data.3 This supports our analysis method and allows us
to convert tip-voltage into a universal electron density gradient scale. In
Fig. 3.12 we report all measured δIS as a function of the electron density
gradient, together with the predictions of Chklovskii’s formula (Eq. 1.11)
for ∆µf = 200, 300 and 400 µeV (black lines). The agreement between
the data and the reconstruction model is excellent, especially in light of

3For further information see Appendix B.
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Figure 3.12: IS width δIS plotted as a function of the electron density gra-
dient (scatter plots), together with the reconstruction picture predictions for
∆µf = 200, 300 and 400 µeV (thin lines).

the uncertainty on the fractional-gap, which is known to be rather sensitive
to the details of the disorder potential. Notably, data globally follow the
expected (dn/drt)

−1/2 dependence.
Our results convincingly demonstrate the occurrence of IS at the sample

edge where the filling factor equals the most robust fractional states. Such
IS are wider than the magnetic length (` = (h̄/eB)1/2 = 9 nm) and can
effectively isolate the compressible stripes in between. This explains why
the fractional components behave as independent channels that can be se-
lectively populated and detected [3, 4, 28, 56]. The presence of fractional
IS also explains the observation of Luttinger liquid behavior in tunneling
experiments between ν = 1 phases (Fermi liquids), presented in Ref. [27].
Such results were interpreted by assuming that electrons tunnel through a
region with local fractional filling factor ν∗ separating the two main incom-
pressible phases at ν = 1. Our work shows that such a region is precisely
the fractional IS that is present at the sample edge. In other words, the
QPC in Ref. [27] was used to individually select the fractional components
within an integer edge.
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Chapter 4

Coherent edge-channel
mixing controlled by SGM

In the previous chapter we showed how the SGM can be used to probe
with unprecedented resolution the inner edge structure, i.e. the local elec-
tron density, group velocity, and compressibility function across the channel.
The present chapter shows that the SGM tip can be used not merely as a
probe, but also as an active component of a complex device in which one
can address quantum structures whose dimensions are continuously tuned
by appropriately positioning the biased tip of the SGM. The movable tip
introduces a new degree of freedom for transport experiments, since it al-
lows to continuously control the size of a single component of the device
under investigation during the same low–temperature measurement session.
In this specific case, we exploited this ability to investigate the scattering
mechanisms that allow to transfer electrons between two co-propagating
edge channels.

4.1 Spatially resolved analysis of edge-channel equi-
libration

It is probably not immediately clear why a SPM technique should be nec-
essary to study scattering between parallel edge channels. Charge transfer
and electro–chemical potential imbalance equilibration can be studied by
transport measurement, as shown by several groups [57–61]. In these ex-
periments, two co–propagating edge channels originating from two ohmic
contacts at different potential meet at the beginning of a common path of
fixed length d, where charge transfer tends to equilibrate their voltage dif-
ference [60]. At the end of the path the edge channels are separated by a
selector gate and guided to two distinct detector contacts. Consequently,
these setups yield information on the cumulative effect of the processes tak-
ing place along the whole distance d. Very little can be said about the

47



48 4.1. Spatially resolved analysis of edge-channel equilibration

microscopic details of the inter-channel scattering process. In particular, it
is still not clear either what are the relevant sources of scattering, or to what
extent such processes are coherent.

Clearly, to address these questions, a spatially resolved investigation
is needed. This is precisely the goal of our SGM experiments. To face
this task, we designed a special QH circuit where the interaction distance d
between two imbalanced edge channels is tip-position dependent, as sketched
in Fig. 4.1. The inter-channel scattering is revealed by measuring the current
of the two output edge channels, IA and IB. The ability to tune d with
continuity makes it possible to probe the role of a local detail at position x
by simply observing any change in the scattered current for d = x.

Our size-variable QH circuit was defined on sample E by using the
electro-static potential generated by three gates and the SGM tip. The
upper left gate in Fig. 4.1(b) defines a region with local filling factor g = 2
which selects only one of the two channels propagating from contact 1 at
voltage V and guides it towards contact 2. When this is grounded, an imbal-
ance is established between edge channels at the entrance of the constriction
defined by the two central gates at local filling factor g = 0. The two chan-
nels propagate in close proximity along the constriction, which is 6 µm long
and 1 µm wide (lithographically). In our experiments, we tuned the deple-
tion spot induced by the biased tip of the SGM so that the inner channel
is completely backscattered, while the outer one is fully transmitted. As
a consequence, the two channels are separated after a distance d that can
be adjusted by moving the tip. Since the outer edge was grounded before
entering the constriction, the detector contact B will measure only the elec-
trons scattered between channels, while the remaining current is detected
at contact A. Experiments were performed on many samples: in particular,
the data reported in this chapter refer to measurements performed on two
nominally identical devices, labeled #E1 and #E2.

The peculiar geometry of this QH circuit implies that all measurements
critically depend on the ability to set the edge configuration so that the inner
edge is perfectly reflected while the outer one is fully transmitted. To this
end, we first performed topography scans (Fig. 4.2(a) shows data relative to
device #E1), that yielded a reference frame to evaluate the relative position
of the tip with respect to the confining gates in the subsequent SGM scans.
Then, we performed calibration scans aimed at establishing tip trajectories
ensuring that the inner channel is indeed completely backscattered, while
the outer one is fully transmitted (edge configuration as sketched in Fig. 4.1).
In these scans, a small AC bias (V = 50 µV) was applied to source contact
1, while contact 2 was kept floating, so that both channels at the entrance
of the central constriction were at the same potential and carried the same
current I1 = I2 = 2G0V . In this sense, this measurement is analogous to
that reported in Fig. 3.4(a). Again, by moving the tip towards the axis of
the 1D–channel, the inner edge channel is increasingly backscattered and the
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Figure 4.1: (a) Schematic drawing of the key idea behind our experiment:
the SGM tip is used to actively control the edge trajectories to obtain a con-
tinuously tunable interaction region length d. This allows a spatially resolved
analysis of the equilibration process. (b) Scheme of the experimental setup.
Three Schottky gates are used to independently contact two co-propagating
edge channels and to define a 6-µm-long and 1-µm-wide constriction. Using
the SGM tip it is possible to selectively reflect the inner channel and to define
a variable interedge relaxation region length d.

conductance decreases until we reach a plateau for GB = 2G0 (left panel of
Fig. 4.2(c)). Thus the tip trajectory ensuring the desired edge configuration
(as depicted in Fig. 4.1(b)) was determined as the set of the middle points
of the plateau stripe (blue line in Fig. 4.2(b)). As shown in the right panel
of Fig. 4.2(c), the conductance along this trajectory is a constant and equals
the conductance of a single channel, i.e. 2G0.

Next, we imaged the inter–channel differential conductance. The two
edge channels entering the constriction were imbalanced by grounding con-
tact 2. In this configuration, at the beginning of the interaction path, only
the inner channel carries a non–zero current, i.e. I1 = 2G0V , where V is the
source voltage. The electrochemical potential balance is gradually restored
by scattering events that take place along the interaction path, and this
yields a partial transfer of the initial current signal from the inner to the



50 4.1. Spatially resolved analysis of edge-channel equilibration

1mm

80.00

0.00

0nm

80nm

80.00

0.00

0 e2/h

4 e2/h

(a)

(b)

(c)

-1 0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0
 

 G
B
 (

e
2
/h

)

position (mm)

0mV

-4mV

0.5mV

1mV

2mV

3mV

5mV

DC bias

80.00

0.00

0 e2/h

1 e2/h

80.00

0.00

0nA

7nA

(d)

(e)

(f)

0 1 2 3 4 5 6
0

1

2

3

4

 

 

G
B
h

/e
2

position (mm)
0 200 400 600 800

1.0

1.5

2.0

2.5

3.0

 

  
 

position (nm)

G
B
h

/e
2

Figure 4.2: (a) Topography scan of device #E1. (b) Calibration scan: the
SGM map refers to the differential conductance signal measured at contact B
when contact 2 is floating. Vtip = −10 V. (c) Conductance profiles measured
along the green (left panel) and the blue (right panel) line in (b). (d) Imaging
of the inter–channel equilibration (contact 2 grounded). (e) SGM measure-
ment at zero magnetic field, with DC source bias V = 100 µV. (f) Finite bias
equilibration signal measured along the trajectory (blue line in Fig. 4.2(b) and
(d)) determined by means of the calibration scan. There is a clear correlation
between the steps in the equilibration curves and the position of scattering
centers in the SGM scan at zero magnetic field. Furthermore, we observe an
enhancement of the equilibration steps with increasing bias.

outer channel. The device architecture allowed us to detect both transferred
electrons and reflected ones by measuring the current signal at contacts B
and A, respectively. We verified that the sum of currents measured at A
and B was constant and equal to 2G0V .

Figure 4.2(d) shows the SGM map of the inter–channel differential con-
ductance GB at zero DC bias. The key feature of this scan is the monotonic
increase of the scattered current as a function of the interaction distance
d. This can be directly observed in Fig. 4.2(f), where we show several
finite–bias conductance profiles acquired along the trajectory (blue line in
Fig. 4.2(b)) determined in the previous calibration step. For a given value
of d, the increase of the equilibration for increasing DC inter-edge bias is
consistent with the results obtained by means of I–V characteristics (as wit-
nessed by the increasing GB) in samples with fixed interaction length [60].
In particular, for DC bias of the order of the cyclotron gap, h̄ωc = 5.7 meV,
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the differential conductance reaches its saturation value GB = G0, which
corresponds to a transmission probability T12 = 0.5, i.e. IA = IB.

All curves in Fig. 4.2(f) are characterized by sharp steps in some po-
sitions. This behavior was confirmed by measurements on other devices,
which showed the same stepwise monotonic behavior albeit with different
step positions. This indicates that the scattering probability is critically
influenced by the local sample details, e.g. by the location of impurities that
can produce sharp potential profiles whose effect in the QH inter–channel
scattering can be revealed by the SGM technique [62]. In order to corre-
late the presence of scattering centers with the steps in the conductance
profile we performed SGM scans at zero magnetic field (Fig. 4.2(e)). Such
a scan provides a direct imaging of the disorder potential and can identify
the most relevant scattering centers (see Refs. [48, 63] for similar scanning
probe microscopy investigations). A comparison between Fig. 4.2(e) and
Fig. 4.2(f) shows a remarkable correlation between the steps in the conduc-
tance profiles and the main spots in the disorder–potential map. This is
the central finding of the present experiment and establishes a direct link
between the atomistic details of the sample and the inter–channel trans-
port characteristics. Such a correlation would be impossible to detect with
standard transport measurements and requires the use of scanning probe
microscopy techniques.

It is important to note that inter–channel transmission is nearly zero
up to the first scatterer. This indicates that impurity–induced scattering is
the dominant process equilibrating the imbalance, while other mechanisms
that were invoked in literature, like acoustic–phonon scattering, have only
a negligible effect for short distances, in agreement with the theoretical
findings of Ref. [58]. We also observe that the step amplitude is suppressed
when the length of the interaction path d is larger than about 3 µm.

In view of possible applications to QH interferometry, it is necessary to
determine the degree of coherence of the position–dependent, inter–channel
differential conductance. For this reason we developed a theoretical model1

which accounts for elastic scattering only and restricted our analysis to
the zero–DC bias case. The system is described through a tight–binding
Hamiltonian, where the magnetic field is introduced through Peierls phase
factors in the hopping potentials. According to the Landauer–Büttiker for-
malism [64, 65], the differential conductance is determined by the scattering
coefficients which are calculated using a recursive Green’s function tech-
nique. Apart from a hard–wall confining potential, electrons are subjected
to a disorder potential consisting of few strong scattering centers on top of
a background potential. Scattering centers are modeled by Gaussian poten-
tials whose positions (which are different from device to device) are deduced

1This model has been implemented in collaboration with R. Fazio, V. Giovannetti,
D. Venturelli and F. Taddei, of the QTI group at Scuola Normale Superiore.
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Figure 4.3: Results of the tight–binding simulations for the zero–bias case:
the inter–channel, zero–temperature differential conductance (solid line) com-
pared with experimental data from device #E2 (filled dots). From the expo-
nential fit (green line) we deduce an equilibration length `eq = 15 µm. The
position of strong scattering centers in the simulation is indicated by red ar-
rows. Comparison of the curves in Figs. 4.2.(f) and 4.3 demonstrates that the
position of the jumps changes from sample to sample and critically depends
on the specific distribution of the scattering centers in each sample, which is
the main finding of this experiment.

from SGM scans in the constriction at zero magnetic field (Fig. 4.2(e) shows
one example). The height of the Gaussian potentials was chosen of the order
of the cyclotron gap and their extension on a length scale of the order of the
magnetic length (`B ≈ 15 nm). The background potential was modeled as
a large number of randomly distributed smooth Gaussian potentials, whose
height is of the order of one tenth of the cyclotron gap. The conductance
was calculated averaging over a large number of random configurations of
the background potential to account for phase-averaging mechanisms which
are always present in the system.

Figure 4.3 shows results of our simulations (solid blue line), together with
the experimental data from device #E2 for V = 0 (filled black dots) and
an exponential fit (green line). For short distances the computed conduc-
tance exhibits steps in correspondence to the scattering centers (positions
indicated by red arrows in Fig. 4.3), while at larger distances a monotonic
behavior is observed. Steps are washed out by the averaging over the back-
ground. Both regimes are consistent with the experimental data.

In Fig. 4.3 we also compare our experimental data with the exponen-
tial behavior GB = G0(1− e−d/`eq) which was previously reported [57, 60].
For short d, there is a discrepancy between the experimental conductance
profile and the exponential curve, due to the discreteness of the scattering
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Figure 4.4: Inter-channel differential conductance as a function of the inter-
action distance d measured at bulk filling factor νb = 2 on device #E2.

centers. On the other hand, for larger distances our experimental data are
well fitted by the exponential curve. We should underline that here we can
actually directly verify this exponential behavior, by continuously tuning
the interaction length d. In previous works, the equilibration length `eq was
extracted from four-wire resistance measurements at fixed d, assuming an
exponential dependence [57, 58, 60, 66]. From our data we obtain an equi-
libration length `eq = 15 µm, which is of the same order of magnitude of
other values reported in literature [66].

Figure 4.4 shows the results of finite-bias measurements on device #E2
performed at bulk filling factor νb = 2, so that equilibration takes place
between two spin-split edge channels. As shown in the graph, most of the
charge is transferred for d < 1 µm, i.e. as soon as the two channels start
interacting. For d > 1 µm the curves in Fig. 4.4 are flat, consistently with
the fact that typical equilibration lengths reported in literature for νb = 2
are of the order of millimeters [57]. Since the electron scattering between
two spin-polarized edge-channels requires spin-flip, the disorder potential
is not sufficient to induce transfer. Therefore the scattered current is only
weakly depending on d. On the other hand, it appears to critically depend
on the edge-channel imbalance. For large negative bias (V < −2 mV),
complete equilibration (GB = 0.5 e2/h) is achieved for d ≈ 1 µm. In the
next paragraph we shall focus on the non-linear regime and discuss how the
current–voltage characterics depend on d.
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4.2 Inter-channel equilibration in the non-linear
regime

The measurement discussed in the previous section clearly evidenced that at
low inter-edge bias the dominant equilibration process is elastic scattering
induced by impurities. For bias exceeding the LL gap, however, radiative
transitions are observed as well [67]. This effect was recently exploited to
implement an innovative converter from phase-coherent electronic states to
photons in the THz region [68]. While the occurrence of this radiative
emission is well established, the interpretation of the threshold value is ac-
tually unclear. In fact, several papers showed [58, 60, 66, 68, 69] that the
threshold voltage is considerably smaller than the nominal Landau level gap
h̄ωc. Some gap reduction mechanisms were suggested [60], but spectroscopic
studies evidenced no deviation of the photon energy from h̄ωc [70]. Thus a
convincing explanation for such a shift is missing so far.

The experimental setup discussed in the previous section can address this
puzzle, since it is possible to follow the evolution of the threshold voltage
when the interaction length d is varied. In fact, the first step to under-
stand the nature of the threshold shift is to determine whether it depends
or not on d, and if it does, how. Using the QH circuit shown in Fig. 4.1, we
can measure the current-voltage (IB-V1) characteristics of the inter-channel
charge transfer, for any value of the interaction distance d compatible with
device dimensions, i.e. from 0 to 6 µm. In a sense, this measurement is com-
plementary to the one reported in the previous section. Experimental data
are shown in Fig. 4.5(a). The first relevant feature concerns the zero-bias
differential conductance which monotonically increases with the interaction
length d, as shown in Fig. 4.5(c). The curves are asymmetric around zero.
While the scattered current displays a non-linear but featureless dependence
on V1 for positive bias,2 we will focus on the analysis of the negative bias
range (V1 < 0, i.e. µi > µo), where a transition between two distinct linear
regimes can be observed. Two linear curve sections with different slope are
separated by a kink occurring at a threshold voltage Vth. We can estimate
Vth for each individual curve by extrapolating straight lines for both the
small bias and the saturation regime and taking the abscissa of the inter-
section point, as explicitly shown in Fig. 4.5(a) for the d = 1.5 µm curve.
When the applied bias (V1) is such that |V1| < |Vth|, the junction resistance
between the two channels increases when d is lowered. On the other hand,
for |V1| > |Vth| the differential conductance saturates to G0 ≡ e2/h, i.e. half
of the total conductance, so that an increase δV1 of the input bias produces
a voltage increase δV1/2 in both output edges. In fact the resulting output
current is δIB = G0δV1, and therefore δVB = (h/2e2)δIB = δV1/2. Thus,

2The analysis of this behavior is beyond the scope of the present thesis. It was already
observed in other experiments [60].
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Figure 4.5: (a) Current-voltage characteristics for different values of the junc-
tion length d. The threshold points Vth (colored dots) have been determined
by extrapolating both the zero-bias and the saturation linear behavior (explic-
itly shown for d = 1.5 µm), and taking the intersection point. (b) Threshold
energy plotted as a function of d, extracted from the experimentl curves in
panel (a). (c) Plot of the zero-bias differential conductance as a function of d.

beyond the threshold, any excess of imbalance between the two edges is
perfectly equilibrated.

The most interesting feature in Fig. 4.5(a) concerns the detail of the tran-
sition between the two regimes, whose position and shape clearly depends
on d. The dependence of the actual threshold voltage |Vth| on interaction
length is shown in Fig. 4.5(b). It is always smaller than h̄ωc and decreases
by increasing d. At the same time, the transition becomes smoother, as
shown in Fig. 4.5(a). This is the main finding of this experiment.

The possibility to track threshold evolution gives us an important indi-
cation about the origin of this phenomenon: in fact, a threshold reduction
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accompanied by a smoothening is the typical signature of a temperature in-
crease. Indeed, the experimental evidence discussed in the previous section
demonstrates the crucial role of the impurity-induced elastic scattering in
equilibrating the edge imbalance. Clearly, for a finite imbalance, such pro-
cesses inject hot electrons in the outer edge. For this reason, we model this
process starting from the conservation of the total edge energy, when only
the most relevant scattering mechanisms are at work. To discuss our model
we shall refer to the scheme shown in Fig. 4.1(a). The two edge channels
meet at x = 0 with an imbalance µi(0) − µo(0) = eV1. Along the junc-
tion length d the imbalance ∆µ(x) ≡ µi(x)− µo(x) ≡ e∆V (x) will decrease
due to scattering events. In this analysis we assume immediate intra-edge
relaxation, so that both chemical potential and electron temperature are
well defined at each position x. In general, in each junction interval dx the
scattered current is given by

dI = Φ(∆V (x), T (x))dx, (4.1)

where Φ is a function of ∆V (x) and T (x) depending on the details of the
equilibration model (edge dispersion, scattering mechanisms, electron heat-
ing etc.). The corresponding changes in the edge potentials are

Vi(x+ dx) = Vi(x)− h

2e2
dI

Vo(x+ dx) = Vo(x) +
h

2e2
dI (4.2)

where the factor 2 accounts for the spin degeneracy. From Eqs. 4.1 and 4.2
we obtain:

dI

dx
= −e

2

h

d

dx
∆V (x) = Φ(∆V (x), T (x)). (4.3)

If the temperature dependence of Φ can be neglected, then IB-V1 curves can
be calculated by solving the Eq. 4.3 for ∆V (x) with boundary condition
∆V (0) = V1. The output edge currents are

IA =
2e2

h

V1 + ∆V (d)

2

IB =
2e2

h

V1 −∆V (d)

2
, (4.4)

whose sum equals the total input current Itot = IA + IB = 2(e2/h)V1. If
the temperature dependence of Φ cannot be neglected, in order to extract
the IB-V1 curves it is necessary to define an equation that connects ∆V (x)
and T (x), i.e. a model describing electron heating, as we shall show in the
following.

Inter-channel scattering can originate from several processes. At low
bias, the inter-edge electron transfer can be either induced by impurity or
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Figure 4.6: (a) Scheme of the impurity-induced elastic scattering for a non-
interacting electron system. (b) When the chemical potential of the inner edge
becomes higher than the outer one by at least the cyclotron gap h̄ωc, verti-
cal radiative transitions can occur. Notice that for opposite polarity vertical
transitions are suppressed.

by phonon scattering. [58, 69] The latter, however, was shown to be less
important when the base temperature is smaller than 1 K [58, 69]. The
dominant process (sketched in Fig. 4.6(a)) is thus elastic scattering induced
by the sharp impurity potential which provides the change in momentum
needed for inter-channel transition. The scattered current in interval dx is

dI =

∫ ∞
−∞

eD(ε)T (ε)(fµi,T (ε)− fµo,T (ε))dε, (4.5)

where D(ε) is the density of states at energy ε and T (ε) is the elastic scat-
tering probability per unit time.

In order to estimate expressions as the one on the right hand of Eq. 4.5,
a model for the edge dispersion is needed. Here we shall assume the simplest
case, i.e. a linear dispersion at the edge, that will be justified in the following
on the basis of the observed temperature effects. In this approximation, we
can approximate both D and T as constant in the energy window e∆V . In
this case the density of states is D(ε) = 2dx/(hvd), where vd is the drift
velocity. Thus (see appendix A.2)

dI = dx
2eT0
hvd

∫ ∞
−∞

(fµi,T (ε)− fµo,T (ε))dε

= dx
2e2T0
hvd

∆V (x), (4.6)

where T0 is the constant transmission probability. For this process Φ is
linear in ∆V (x) and does not depend on T . In this limit, Eq. 4.3 can be
easily solved and yields an exponential decay for the edge imbalance

∆V (x) = V1e
− 2T0
vd

x
. (4.7)
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This exponential behavior was assumed in the literature [57, 58, 69] to de-
scribe the zero-bias inter-channel scattering in the limit of a uniform dis-
tribution of scattering centers. The characteristic length in this case is
`eq = vd/(2T0), i.e. the average distance between two scattering events. We
experimentally verified this exponential decay at the beginning of this chap-
ter [71]. Furthermore, the output current IB is linear in V1 (ohmic behavior):

IB =
2e2

h

V1 −∆V (d)

2
= V1

2e2

h

1− e−
d
`eq

2
. (4.8)

At higher imbalance, comparable to the Landau level gap h̄ωc, other
equilibration processes become possible. When µi > µo radiative transitions
from the inner edge to the outer one are enabled, as depicted in Fig. 4.6(b).
Non-vertical relaxation could in principle occur via phonon-assisted transi-
tions. However, this is a second-order effect that can in first approximation
be disregarded, at least at low temperatures. The scattered current due to
vertical transitions is then given by

dI =

∫ ∞
−∞

eD(ε)T1(ε)[fµi,T (ε)(1− fµo,T (ε− h̄ωc))]dε, (4.9)

where T1 is the probability per unit time for the transition ε→ ε−h̄ωc. Since
the Landau level bands are parallel, the transition probability is constant in
energy. Therefore we can simplify Eq. 4.9

dI = dx
2eT1
hvd

∫ ∞
−∞

[fµi,T (ε)(1− fµo,T (ε− h̄ωc))]dε

= dx
2eT1
hvd

 e∆V (x)− h̄ωc

1− e
h̄ωc−e∆V (x)

kBT

 (4.10)

where the integration is explicitly shown in appendix A.2. In the Φ function
we also have a non-linear addendum, thus the integration of Eq. 4.3 must be
performed numerically. At low temperature, due to the exponential term,
the effect of the term in Eq. 4.10 is negligible for ∆V (x) below the threshold
h̄ωc. For ∆V (x) > h̄ωc the availability of empty states in the lower Landau
level gives rise to radiative relaxation. As shown in recent experiments [68],
the photons emitted in this process can indeed be collected with a suitable
waveguide and detected.

So far we completely neglected the effect of the electron heating due to
the injection of hot carriers. In order to obtain a quantitative estimate of
the amount of energy transferred to the electron system, we need to first
estimate the total energy increase for an edge channel when we increase its
chemical potential from the ground level µ = µ0 to an arbitrary level µ = µj
and its temperature from T = 0 to T = Tj

Ej =

∫ ∞
−∞

2d

hvd
(ε− µ0)(fµj ,T (ε)− fµ0,0(ε))dε
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≈ 1

2

2τ

h
(µj − µ0)2 +

2τ

h

π2

6
k2BT

2
j , (4.11)

where in the second line we approximated the integral with its first order
Sommerfeld expansion (as shown in detail in appendix A.3) and τ ≡ d/vd.

In order to calculate explicitly the output temperature T (x) we shall
assume energy conservation in each element dx

Ei(x) + Eo(x) = Ei(x+ dx) + Eo(x+ dx), (4.12)

together with three additional approximations: (i) the two edges imme-
diately restore the thermal equilibrium after each scattering event; (ii) the
temperature is approximately the same in both edges Ti(x) = To(x) = T (x),
with T (0) = Tin, where Tin is the bulk electron temperature; (iii) in each
element dx only the ohmic part of the scattered current dI contributes to
electron heating. In fact, while elastic processes transfer hot carriers between
the two edges, radiative terms allow electrons to relax by photon emission.
With these assumptions, after substituting Eq. 4.11 into Eq. 4.12 (as seen
in Appendix A.4), we have an expression linking the change in temperature
to the local imbalance

d

dx
T (x) =

3e2

4π2k2B`eq

∆V 2(x)

T (x)
. (4.13)

Equation 4.3 must be solved together with Eq. 4.13 to obtain both T (x) and
V (x). Due to electron heating, the onset of radiative transitions is shifted
below the cyclotron gap value h̄ωc since thermally-excited electrons leave
available states in a range of about kBT around the chemical potential of
the lower level. The transition itself becomes smoother, since the expression
in Eq. 4.10 is less steep at higher temperatures.

Figure 4.7(a) shows the IB-V1 characteristics (red dots) at low bias for
the d = 2.4 µm case. The behavior is clearly ohmic, as confirmed by a
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Figure 4.7: (a) Detail of the IB-V1 characteristics in the range -2 mV< V1 <
0, for d = 2.4 µm (red dots). The behavior is ohmic as evidenced by the linear
fit (blue line). (b) Plot of `eq for different junction lengths d.
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linear fit (blue line, adjusted R2 = 0.997). This agrees with the predic-
tions of our model at low bias, when radiative emission is negligible and
Eq. 4.8 applies. The zero-bias differential conductance depends on the dis-
tribution of scattering centers inside the constriction. Equation 4.8 allows
us to obtain the equilibration length `eq by fitting the IB-V1 curves in the
linear region. Figure 4.7(b) displays the different `eq values obtained for
each junction length d. The average `eq value (21 µm) is compatible with
the one reported in section 4.1 (15 µm), considering that those results were
obtained from different samples. The graph evidences that `eq depends on
d. As shown in section 4.1, the actual impurity density is highly sample-
dependent and can fluctuate along inter-channel junction. The monotonic
decrease observed in Fig. 4.7(b) could however indicate that for small d val-
ues scattering centers are somewhat less effective, due to the fact that the
edges are smoothly brought into interaction and separated. Therefore the
inter-channel separation is larger at the constriction entrance than at the
inner points. These boundary effects are more important for smaller d.

The previous results provide the first of the two free parameters in our
model, namely `eq and T1. Therefore we fit the experimental curves in
Fig. 4.5 with the functions obtained solving Eqs. 4.3 and 4.13, with the
only fitting parameter T1. The fit for d = 2.4 µm is displayed in Fig. 4.8(a),
together with the experimental data. The agreement between the two curves
is remarkable: our simple model reproduces well the main features observed
in Fig. 4.5. The threshold shift can be better seen in Fig. 4.8(b), where we
plot the fitting curves for the same d values in Fig. 4.5. In the inset we show
a comparison between the threshold voltage values extracted from the fitting
curves and the ones directly estimated from the IB-V1 characteristics. This
graph indicates that the present model successfully describes the observed
threshold reduction. The value for the Landau level gap (h̄ωc = 5.74 meV)
was kept constant in these fits. This value turns out to be optimal once
both `eq and T1 have been determined, in fact any further adjustment of the
gap decreases the fit quality.

This result explains the reduction of the threshold for photon emission
observed in several experiments [60, 68]. The significant deviation from
h̄ωc/e is an effect due to electron heating induced by the injection of hot
carriers in the outer edge via elastic scattering.

In order to quantitatively estimate the electron temperature increase, we
solved Eq. 4.13, using the parameters `eq and T1 provided by the previous
fits, with the initial condition Tin = 400 mK. Figure 4.9 shows the solutions
for the d values corresponding to the experimental data in Fig. 4.5. For small
bias the temperature increases almost quadratically with the imbalance,
while for intermediate values the behavior is approximately linear, with a
slope proportional to d. Finally, temperature tends to saturate at the onset
of radiative emission, which suppresses further injection of hot electrons
into the outer edge. At saturation, the output edge temperatures are by far



Chapter 4. Coherent edge-channel mixing controlled by SGM 61

- 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1
- 1 2 5

- 1 0 0

- 7 5

- 5 0

- 2 5

0( a )

 

 

 

 I B (n
A)

b i a s  V 1   ( m V ) - 8 - 6 - 4 - 2 0 2
- 2 0 0

- 1 5 0

- 1 0 0

- 5 0

0

5 0

1 2 3 4 5 6 7
2 . 8
3 . 2
3 . 6
4 . 0

 

 

 

 E x p e r i m e n t
 F i t

thr
esh

old
 en

erg
y (

me
V)

i n t e r a c t i o n  l e n g t h  d  ( m m )

 

b i a s  V 1   ( m V )

 I B (n
A)

( b )

d :
1 . 5 m m
2 . 4 m m3 . 2 m m
4 . 0 m m
4 . 8 m m
5 . 6 m m
6 . 3 m m

Figure 4.8: (a) Fit (blue line) of the IB-V1 curve for d = 2.4 µm (red dots)
using solutions of Eqs. 4.3 and 4.13, with the parameter `eq obtained from the
previous linear fits. (b) The corresponding fitting curves of the experimental
data shown in Fig. 4.5. (inset) Threshold voltages plotted as a function of d
as deduced from the fitting curves (red dots), together with the values directly
extracted from Fig. 4.5 (black squares).
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Figure 4.9: Bias dependence of the outgoing electron temperature plotted
for different d values. The curves are obtained from Eq. 4.13, with the initial
condition T (0) = 400 mK. The parameters `eq and T1 are obtained from the
previous fits of the experimental data.

larger than the base temperature.

So far we have considered a linear edge dispersion, which neglects effects
of edge reconstruction due to electron-electron interactions [10]. We have
also developed alternative models, that take into account the effect of the
compressible and incompressible stripes at the sample edge. While such
more complex analysis correctly predicts the linear behavior at low bias, it
is less satisfactory in describing the threshold evolution, although it contains
more adjustable parameters (e.g. the compressible and incompressible stripe
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widths). We interpreted such a discrepancy as the effect of the high electron
temperature induced by the elastic scattering processes and present on most
part of the edge junction.



Chapter 5

Conclusion

The edge picture is a paradigmatic example of a good scientific model. Al-
though simple, it yields precise and well-defined predictions, and successfully
explained and unified a number of experimental findings. For a long time,
however, nobody could directly observe edge states. Maps of the edge chan-
nels became available only with the advent of SPM techniques. As discussed
in chapter 2, early spatially-resolved measurements were rather motivated
by the need to verify the limits of the edge picture itself, namely the ef-
fect of electron-electron interactions on the edge structure, as described in
chapter 1. SPM allowed to electrostatically detect the charge pile-up at the
sample edge and image channel trajectories. Unfortunately spatial resolu-
tion was not sufficient to reveal the edge structure.

This thesis provides the first image of the inner fractional structure of in-
dividual integer edge channels: SGM maps show that it consists of a series of
alternating compressible and incompressible stripes. The latter are observed
when the local filling factor corresponds to a robust fraction. The high spa-
tial resolution achievable with our technique allowed us to quantitatively
test the predictions of the reconstruction theory [10]. The experimental
results presented in section 3.4 demonstrate that both the measured incom-
pressible stripe widths and their dependence on electron density profiles are
in excellent agreement with the model introduced by Chklovskii [10, 72].
The experimental demonstration of fractional structures within integer edge
channels represents the conclusive answer to long-time debated issues. The
stripe structure explains how edge channels behave at the interface between
an integer and a fractional QH phase. In this case, an integer edge is par-
titioned into its fractional components, so that there is continuity between
the fractional incompressible stripe and the corresponding macroscopic frac-
tional phase. This also elucidates the non-fermionic characteristics observed
by finite bias measurements on point-like junctions between integer QH
phases [27].

In our experiments we also demonstrated how to accurately control edge-
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channel trajectories. This ability introduces a new degree of freedom in
transport measurements: the device geometry itself can become a tunable
experimental parameter, controllable in real time at low temperature, ex-
actly as the gate bias, the injected current, or the applied magnetic field.
The unprecedented flexibility of this method opens the way to a number of
experimental opportunities, such as the one discussed in chapter 4: we used a
size-tunable QH circuit to image the effect of the disorder-induced potential
modulations to charge equilibration between co-propagating edge channels.
These measurements clarified important findings of previous transport ex-
periments: on one hand our data unambiguously showed the link between
inter-edge scattering and the presence of potential fluctuations. On the
other hand, they allowed to explain the puzzling reduction of the threshold
voltage for the onset of radiative emission [60, 66, 68] .

We believe that this ability to explain and clarify fundamental (and
debated) issues of QH physics makes these results relevant by themselves.
The main motivation for our research, however, is related to the possibility
to implement a beam mixer for co-propagating edge channels, the critical
element of a new class of quantum electron interferometers, as described in
section 1.4. In our laboratory, two different strategies to implement such a
challenging device are under study, depending on the type of edge channels
to be mixed. In case of two spin-split edge channels (fully spin polarized),
there is a good overlap between the orbital component of the wavefunctions,
whereas the spin components are completely orthogonal. A possible strategy
consists in applying a perturbative in-plane magnetic field, which allows to
precess the spins, and thus to induce a coherent mixing [73]. On the other
hand, if the edge channels to be mixed are spin degenerate, disorder-induced
fluctuations are sufficient to generate inter-edge scattering, as we showed in
chapter 4. However, other processes were invoked in the literature to explain
this mixing, e.g. acoustic phonon scattering [58]. Such additional processes,
if relevant, would destroy the phase coherence. For this reason, the results
reported in section 4.1 are crucial to determine if potential modulations
can be employed to achieve a coherent beam mixer. Our data indicate
that the dominant equilibration process is impurity-induced scattering. This
suggests that a coherent beam mixing should be possible. However, in order
to demonstrate that coherence is preserved, a specific interferometric test is
required.

Figure 5.1 shows our proposal for such a device. It is a development of
the QH circuit depicted in Fig. 4.1. A selector gate (g2) allows to imbalance
two edge channels that come from distinct source contacts 1a and 1b. The
channels meet at the entrance of a long constriction, where they are mixed.
The inner edge is reflected by the tip, while the outer one is reflected by a
shutter gate (g3). The two edge channels thus meet again after having accu-
mulated an Aharonov-Bohm phase difference Φ proportional to the magnetic
flux piercing the area between the two alternative paths (see Fig. 5.1). Next,
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g1

g5

g2
g3

g4

1a 1b

2b2b

F

BS1

BS2

Figure 5.1: The device discussed in chapter 4 can be used as a simply-
connected MZI by using a shutter gate (g3) and an additional selector gate
(g5). The two interacting channels are mixed again on the bottom edge of the
constriction, after having accumulated an Aharonov-Bohm phase difference Φ.
Then, they are separated and sent to two detecting contacts (2a and 2b).
Notice that the edge channel topology is the same as the one in Fig. 1.6.

the bottom part of the constriction acts as second beam splitter (as BS2 in
the scheme of Fig. 1.6). The two outgoing edges are separated and sent to
two different contacts using another selector gate (g5 in the scheme). Topo-
logically, this QH circuit is the same as the one proposed by Giovannetti et
al. [9]. In this case, the magnetic flux (and thus the Aharonov-Bohm phase)
can be changed (i) by moving the tip, or (ii) by lateral depletion using the
gate g3, or (iii) by changing the magnetic field. Preliminary experiments on
one such device were actually already performed. The results we obtained
so far are not conclusive.1 The main difficulty is related to the compromise
between the need to have a suitable inter-channel mixing (which requires
an interaction path length d of a few microns) with the constraint that the
total length of the device (the two beam splitters plus the interference path)
is less than the coherence length `φ, which scales as T−1 [74]. The values
reported for `φ at 20 mK range from 20 µm [6, 74] to 80 µm [75]. Therefore,
the expected value at 400 mK (the electron temperature available in our
setup) is 1–4 µm, which reduces the possible length of the beam mixer to
0.5–2 µm: as we have shown in chapter 4, within such distances it is difficult
to obtain a good mixing via random impurities. Near-future developments
of our work are related to the possibility to perform measurements at lower
temperatures (i.e. in a dilution-fridge SGM). A decrease of the electron tem-

1A few weak oscillations in the transmitted signal were actually observed. Their pe-
riodicity however does not allow us to correlate the oscillations to the geometry of the
interfering paths.
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perature may make `φ large enough to achieve good mixing without losing
electron phase coherence, since the `φ values reported at 20 mK are much
larger than the length required to obtain a good mixing by means of random
impurities. Another possible strategy consists in inducing strong scattering
centers in a controllable manner, e.g. by inducing surface charge accumula-
tion by means of an AFM tip. In this way we can obtain good inter-channel
mixing even for short (< 1 µm) interferometers.

As shown in chapter 3, our experimental conditions allow to observe
a complex inner-edge structure. In the Introduction, we argued that the
fractional components that form the edge channels can be used as building
blocks for interferometers working with anyons instead of fermions. The
possibility to use fractional stripes as independent channels depends on the
robustness of the incompressible stripes that separate the imbalanced com-
pressible stripes. As discussed in section 3.4, in the fractional QH regime
the quasi-particle gaps (and thus the incompressible stripe width) depend
on both temperature and disorder [55]. For this reason, the SGM mea-
surements on QPCs would benefit from an increase of the 2DEG mobility
(µ > 107 cm2/Vs) and a decrease of the electron temperature. This would
allow to operate the interferometer shown in Fig. 5.1 with individual frac-
tional stripes instead of single integer edge channels.

The impact of such a result should not be underestimated since it would
represent a valid step forward towards the achievement of an interferom-
eter operating with exotic quasi-particles, like the non-abelian excitations
of the ν = 5/2 QH phase. Such an advance would in perspective lead to
the implementation of unprecedentedly fault-tolerant quantum computers,
because of the nonlocal encoding of the quasiparticle states, which makes
them immune to errors caused by local perturbations [76].



Appendix A

Quantum Hall calculations

A.1 Landau quantization

The single-particle Hamiltonian describing the physics of one electron con-
fined in two dimensions, in the presence of a strong magnetic field B = Bẑ,
is:

H =
(p + eA)2

2m∗
=

p2x
2m∗

+
(py + eBx)2

2m∗
, (A.1)

where we used the Landau gauge A = xBŷ, which is particularly convenient
for translationally invariant systems, as an infinitely long Hall bar. The
translation symmetry in the ŷ direction allows us to write the wavefunction
as an eigenstate of py

ψk(x, y) = eikyϕk(x), (A.2)

where we replaced py → h̄k. After separating variables, we have

H′kϕk(x) = εkϕk(x), (A.3)

where

H′k =
p2x

2m∗
+

(h̄k + eBx)2

2m∗
=

p2x
2m∗

+
1

2
m∗ω2

c (x+ k`2B)2. (A.4)

The term H′k in Eq. A.4 describes a displaced 1D harmonic oscillator, whose
center coordinate Xk ≡ −k`2B is proportional to the momentum quantum
number along ŷ. The energy spectrum is thus

εnk =

(
n+

1

2

)
h̄ωc, (A.5)

where ωc = eB/m∗ is the cyclotron frequency. The eigenfunctions are

ψnk(x, y) ∝ eikyHn(x+ k`2B)e−(x+k`
2
B)2/2`2B , (A.6)

where Hn is the n-th Hermite polynomial.
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68 A.1. Landau quantization

In order to include the spin, we must add the Zeeman term Szg∗µBB to
the Hamiltonian H. As a consequence, each orbital level is split1 into two
levels (the so-called Landau levels) with well defined spin orientation.

Since the single-particle energies do not depend on the momentum along
ŷ, the Landau levels are extremely degenerate. In order to calculate the
degeneracy, let us consider a rectangular Hall bar with dimensions Lx×Ly,
whose extremes in x are xmin = −Lx and xmax = 0. The basis states which
are confined within the bar have the wavevector k that ranges from k = 0
to k = Lx/`

2
B. The total number of states in each Landau level is thus

N =

∫ Lx/`2B

0

(
Ly
2π

)
dk =

LxLy
2π`2B

, (A.7)

so that the degeneracy per unit area is nL = (2π`2B)−1 (Eq. 1.1).
In any real sample there is an external potential U(x) which confines

electrons within the Hall bar. If U(x) is slowly varying on the magnetic
length scale, it will only couple basis states that have almost the same center
coordinate Xk. Although the ϕk are no longer the eigenfunctions of the
harmonic oscillator, they will be nonetheless still peaked near Xk = −k`2B.
The first-order correction to the single-particle energies is thus

〈ψnk | U(x) | ψnk〉 ≈ U(−k`2B). (A.8)

The confinement potential gives therefore an additional term which produces
a band-bending at the sample edge depicted in Fig. 1.2. The group velocity

vk =
1

h̄

∂εk
∂k
≈ −`

2
B

h̄

dU

dx

∣∣∣∣
Xk

(A.9)

is opposite on the two edges of the sample (counter-propagating edges).
The expression for the group velocity allows us to calculate the fundamen-
tal relation between Hall voltage and net current transmitted in a Hall bar
(Eq. 1.3). As discussed in section 1.1, due to the chirality and to the sup-
pression of backscattering, the counter-propagating edge channels can be in
equilibrium with two distinct and imbalanced contacts, and thus they can
have different chemical potentials. For each Landau level, the total current
is given by

I0 = − e

Ly

∫ +∞

−∞

Ly
2π

1

h̄

∂εk
∂k

f0(k)dk, (A.10)

where f0 is the occupation probability for the k state in the Landau level.
At T = 0 the integral can be easily evaluated

I0 = − e

Ly

∫ µL

−µR
dε =

e

h
(µR − µL) ≡ e2

h
V0, (A.11)

1In GaAs (g∗ = −0.44) the Zeeman splitting h̄ωc is about 70 times smaller than the
cyclotron splitting.



Appendix A. Quantum Hall calculations 69

where µL and µR are the chemical potential of the left and right contact,
respectively. Notice that if ν different Landau levels are occupied, we recover
Eq. 1.3.

A.2 Integration of expressions containing Fermi
functions

In Eq. 4.6 we evaluated the integral∫ ∞
−∞

(fµi,T (ε)− fµo,T (ε))dε =

=

∫ ∞
−∞

 1

1 + e
ε−µi
kBT

− 1

1 + e
ε−µo
kBT

 dε. (A.12)

Defining x ≡ ε/kBT , xi ≡ µi/kBT and xo ≡ µo/kBT , we have∫ ∞
−∞

(
1

1 + ex−xi
− 1

1 + ex−xo

)
kBTdx. (A.13)

A primitive of the expression in brackets is

− ln(1 + ex−xi) + ln(1 + ex−xo), (A.14)

thus ∫ ∞
−∞

(
1

1 + ex−xi
− 1

1 + ex−xo

)
kBTdx =

= lim
x→+∞

kBT
[
− ln(1 + ex−xi) + ln(1 + ex−xo)

]
+

− lim
x→−∞

kBT
[
− ln(1 + ex−xi) + ln(1 + ex−xo)

]
=

= kBT (xi − xo)− 0 = µi − µo = e∆V . (A.15)

In Eq. 4.10 we evaluated the integral∫ ∞
−∞

[fµi,T (ε)(1− fµo,T (ε− h̄ωc))]dε. (A.16)

Defining x ≡ ε/kBT , xi ≡ µi/kBT and xo ≡ (h̄ωc + µo)/kBT , we have∫ ∞
−∞

[
1

1 + ex−xi

(
1− 1

1 + ex−xo

)]
kBTdx. (A.17)

A primitive of the expression in square brackets is

exi

exi − exo
ln

(
exo + ex

exi + ex

)
, (A.18)
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thus ∫ ∞
−∞

[
1

1 + ex−xi

(
1− 1

1 + ex−xo

)]
kBTdx =

= lim
x→+∞

kBT

[
exi

exi − exo
ln

(
exo + ex

exi + ex

)]
+

− lim
x→−∞

kBT

[
exi

exi − exo
ln

(
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)]
=

= kBT

[
0− exi

exi − exo
(xo − xi)

]
=

= kBT
xi − xo

1− exo−xi
=

e∆V − h̄ωc
1− e

h̄ωc−e∆V
kBT

. (A.19)

A.3 First order approximation to the edge energy

In order to evaluate the first line of Eq. 4.11 we exploit the Sommerfeld
expansion ∫ ∞

−∞

g(ε)

1 + e
ε−µ
kBT

dε =

=

∫ µ

−∞
g(ε)dε+

π2

6
k2BT

2g′(µ) +O

(
kBT

µ

)4

(A.20)

where g(ε) is a generic function of ε and g′(µ) is its first derivative evaluated
at ε = µ. By applying this relation to Eq. 4.11 we obtain∫ ∞

−∞

2d

hvd

ε− µ0
1 + e

ε−µ
kBT

dε−
∫ µ0

−∞

2d

hvd
(ε− µ0)dε ≈

≈
∫ µj

µ0

2d

hvd
(ε− µ0)dε+

2d

hvd

π2

6
k2BT

2
j =

=
1

2

(
2τ

h

)
(µj − µ0)2 +

(
2τ

h

)
π2

6
k2BT

2
j . (A.21)

A.4 Determination of T (x)

When the electron temperature is non-zero, the expression for the total edge
energy has an extra term proportional to T 2, as seen in Eq. A.21. We can
thus define the electrostatic and the thermal component of the total edge
energy:

Eel ≡ 1

2

(
2τ

h

)
(µj − µ0)2 =

1

2

(
2τ

h

)
e2V 2

j

Eth ≡
(

2τ

h

)
π2

6
k2BT

2
j (A.22)
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where Vj is the edge voltage referred to the ground. Equation A.22 allows
us to evaluate Eq. 4.12. As discussed in chapter 4, only elastic scattering
processes transfer hot carriers between the edges, while the radiative term
allows electrons to relax by photon emission. Thus we modify Eqs. 4.2 as
follows

Vi(x+ dx) = Vi(x)− h

2e2
dIelast.

= Vi(x)− h

2e2
e2

h

1

`eq
∆V (x)dx

Vo(x+ dx) = Vo(x) +
h

2e2
dIelast.

= Vo(x) +
h

2e2
e2

h

1

`eq
∆V (x)dx. (A.23)

After evaluating Eq. 4.12 with Eq. A.22, using the substitutions A.23 we
obtain

2π2

3
k2BT (x)dT =

e2

2

1

`eq
∆V 2(x)dx (A.24)

(where Ti(x) = To(x) = T (x)) from which Eq. 4.13 easily follows.
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Appendix B

Analysis of the SGM maps

B.1 SGM maps and the reconstruction picture

In order to correlate our experimental data (SGM maps of Fig. 3.8) with the
reconstruction picture [10, 72], it is useful to start with the well-established [46,
77] single-particle case. We shall first discuss integer channels at the edge
of QH systems with bulk filling factor νb = 2. Figure B.1(a) shows the
single-particle energy dispersion within the QPC for the case of full trans-
mission (GT = νbG0 = 2G0) [77]. The energy dispersion is self-consistently
determined by gate potentials (split-gates plus the SGM tip) and elec-
tron screening. The latter depends on the local compressibility, which is
in turn determined by the local electron density. When the two counter-
propagating channels are separated by an incompressible phase at the QPC
center, backscattering is prevented by Pauli principle: all single-particle
states within the incompressible stripe are populated, therefore backscatter-
ing can only occur via electron tunneling from a compressible stripe to the
counter-propagating one. Due to the presence of the incompressible stripe,
the distance between the compressible stripes is larger than the magnetic
length, so that the probability for tunneling events is highly suppressed. The
detailed shape of the confining potential is influenced by QPC polarization
and by tip positioned bias. In particular the distance between compressible
stripes,can be reduced by moving the tip towards the QPC center. As shown
in Fig. B.1(b), the two counter-propagating stripes can be forced to merge at
the QPC center: backscattering is thus enabled (G0 < GT < 2G0). When
the QPC width is further reduced, an incompressible phase is induced at
the QPC center (now with filling factor ν = 1, as shown in Fig. B.1(c)). In
this configuration the transmitted conductance is GT = G0, since one edge is
completely reflected. Note that further backscattering can only be induced if
we merge the two external compressible stripes. As a consequence, a plateau
is observed in the SGM map: a tip displacement does not increase backscat-
tering, unless it is large enough to merge the two remaining compressible

73
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stripes. For this reason, the plateau width is in good approximation twice
the incompressible stripe width [46].

In the bottom part of Fig. B.1, we report the electron density profile for
each configuration (a–c). When the electron phase is locally gapped (incom-
pressible stripes), the electron density is constant and equals a multiple of
the LL degeneracy nL. Vice versa, when the electron screening is effective,
the energy dispersion is flat, and the density changes.

The same picture can be applied to a single integer edge in a νb = 1
QH system. At the sample edge, the electron density monotonically de-
creases. When the local filling factor equals a robust fraction, a fractional
incompressible phase is established, due to the condensation of fractional
quasi-particles. Within this stripe, electron density is constant. When an
incompressible phase is induced at the QPC center, it isolates the adjacent
compressible stripes, so that a plateau in the GT signal is observed. The
behavior of fractional and integer stripes is thus very similar: the SGM-map
features depend only on the local electron compressibility.

Figure B.2 shows a sketch of the reconstruction picture for the fractional
compressible and incompressible stripe distribution within a QPC in a QH

D

(a) (b)

cn 2nL

nL

(c)

iii c i icc ccc c ci

backscattering

Figure B.1: (a) Top panel: schematic picture of single-particle energy dis-
persion within a QPC in a QH system at bulk filling factor νb = 2, in the
case of full transmission (GT = 2G0) [77]. The width of compressible (c) and
incompressible (i) stripes depends on both the local electron density and the
energy gap ∆ between the LLs. In this case the QPC width is large enough
to allow full transmission (GT = 2G0). Bottom panel: the corresponding elec-
tron density function. (b) When the QPC is shrunk, two counter-propagating
compressible stripes merge at the QPC center, so that backscattering is en-
abled. (c) A further decrease of the QPC width induces an incompressible
phase with filling factor ν = 1 at the QPC center. At this point, to induce fur-
ther backscattering it is necessary to merge the remaining compressible stripes.
This requires to shrink the QPC width by an amount 2δIS , where δIS is the
incompressible stripe width.
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Figure B.2: (a) Scheme of the compressible and incompressible stripe con-
figuration in a QPC, in the case of full transmission. The bulk filling factor
is νb = 1, hence GT = G0. For simplicity, in the sketch we only considered
the ν = 1/3 and ν = 2/3 fractions. (b) Stripe configuration when the filling
factor at the QPC center is ν = 2/3 (incompressible phase). In this case, one
third of the current is reflected, so that GT = 2/3G0. (c) Stripe configuration
corresponding to GT = 1/3G0. See also Fig. 2 of Ref. [28].

system at νb = 1. The three panels (a–c) show how the stripe configuration
changes when the QPC is gradually pinched off. Panel (a) shows the case
of full transmission. In this case, an integer incompressible stripe at filling
factor νIS = νb = 1 separates the two counter-propagating edges, exactly
as in Fig. B.1(c). The transmitted conductance does not decrease until we
merge the counter-propagating stripes: then it monotonically decreases until
a fractional incompressible stripe (at νIS = 2/3 and νIS = 1/3 in Fig. B.2(b)
and B.2(c), respectively) is induced at the QPC center. At this point, small
changes in the QPC width do not change the backscattered current, exactly
as observed in the integer case (Fig. B.1(c)). In correspondence to the
plateaus, the transmitted current is thus GT = νISG0.

B.2 Estimate of δIS from the SGM maps

As discussed in the section 3.3, signatures of the fractional incompressible
stripes can be emphasized by counting the occurrences of all the GT values
in the SGM map, and reporting them in a histogram. Plateaus in the
SGM maps are displayed as peaks in the histogram in correspondance to
GT = νG0, where ν is a robust fraction. Figure B.3(a) shows the histograms
corresponding to 9 SGM scans performed on the same area as in Fig. 3.8. All
fractional peaks are clearly visible in each individual histogram1. Spurious

1Provided that the GT value corresponding to the peak lies within the range of GT
values occurring in the scan. For example, for Vtip = −7.5 V, the transmitted conductance
in the area of interest is never higher than 0.63 e2/h, thus the 2/3 peak is not visible in
this scan. On the contrary, for Vtip = −3.5 V the conductance in the same area is always



76 B.2. Estimate of δIS from the SGM maps

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

- 3 . 5  V
- 4 . 0  V
- 4 . 5  V
- 5 . 0  V
- 5 . 5  V
- 6 . 0  V
- 6 . 5  V
- 7 . 0  V

 

 

co
un

ts

c o n d u c t a n c e  ( e 2 / h )

V t i p
- 7 . 5  V

1 / 3

2 / 5
3 / 5

2 / 3

Figure B.3: Histograms of the occurrence of each GT value for all the 9
different SGM scans performed at different Vtip values. Fractional peaks are
visible in each individual histogram.

structures are still visible in some scans, but they are removed by averaging
all scans. The resulting averaged histogram was reported in Fig. 3.9, which is
plotted here in Fig. B.3 for convenience. All histograms in Fig. B.3 terminate
with an abrupt decrease of GT occurrence, which corresponds to the cut-off
determined by the scan area. The highest GT values lie outside the scan
area, thus their occurrences are suddenly suppressed. These steep thresholds
are responsible of the noisy structures at high conductance values in the
averaged curve of Fig. 3.9.

The incompressible stripe width δIS is determined by taking the average
width of the stripes that correspond to GT values within the FWHM of the
peak in the histogram, as depicted in Fig. B.4. In order to compare these
widths with the predictions of the reconstruction model, it is necessary to
estimate the electron density gradient close to the plateau. This value can
be determined from the slope of GT near the plateau in the SGM maps.
Figure B.5 illustrates our method: as discussed in section 3.3, in proximity
to a plateau (Fig. B.5(a)), the electron phase is compressible and the electron
density has a maximum at the QPC center (filling factor νc = GT /G0). The
panel (b) of Fig. B.5 shows how a reduction of the QPC width (obtained,
for instance, by moving the tip toward the QPC center) is correlated to a
reduction of the filling factor at the QPC center νc. To first order, the filling

larger than 0.41 e2/h, so that the 1/3 peak is not observed in this scan. Also for this
reason, it is convenient to plot an averaged histogram, which allows to display a larger
range of GT in a single graph.
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Figure B.4: The incompressible stripe width δIS is obtained starting from
the FWHM of the corresponding peak in the histogram (left panel). This range
of GT values defines a circular stripe in the SGM map (right panel). δIS is
given by the average width of such a stripe.

drtn n

dnc

1/3

nc

nc+dnc

drt

tip tip

2DEG 2DEG

gate gategate gate

(a) (b)

r r

Figure B.5: (a) Local filling factor distribution within a QPC that corre-
sponds to a tip position close to a 1/3 plateau in the SGM map. (b) A
displacement δrt of the SGM tip toward the QPC center reduces the QPC
width of the same amount. The corresponding reduction of the filling factor at
the QPC center (which is measured as a reduction of GT = νcG0) is approxi-
mately given by δrt/2 times the filling factor slope. Therefore we can deduce
the approximate density slope directly from the GT slope in the SGM map.
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factor variation δνc at the QPC center is given by the slope of the filling
factor function ν(r) times one half of the QPC width reduction δrt

δνc =
dν

dr

δrt
2
, (B.1)

With the substitution n = nLν and GT = νcG0, we obtain immediately
Eq. 3.1

dn

dr
=
nLδνc
1
2δrt

= 2nL

(
1

G0

δGT
δrt

)
. (B.2)



Appendix C

Nanofabrication protocols

C.1 List of samples

Here we report the list of the samples employed in this thesis. The samples
were fabricated in the Clean Room of the NEST lab of the Scuola Normale
Superiore, starting from the heterostructures listed in Table C.1.

• Sample A: Hall bar fabricated starting from the #6 8 05.1 (a) het-
erostructure, with three pairs of Schottky split-gates. The gates are
patterned by thermal evaporation of a Ti/Au (10/20 nm) bilayer. The
split-gate gap is 300 nm.

• Sample B: Hall bar fabricated starting from the #HM2411 (a)
heterostructure, with three pairs of Schottky split-gates. The gates
are patterned by thermal evaporation of a Ti/Au (10/20 nm) bilayer.
The split-gate gap is 300 nm.

• Sample C: Hall bar fabricated starting from the #6 8 05.1 (b)
heterostructure, with three pairs of Schottky split-gates. The gates
are patterned by thermal evaporation of a Ti/Au (10/20 nm) bilayer.
The split-gate gap is 400 nm.

• Sample D: Hall bar fabricated starting from the #HM2417 het-
erostructure, with three pairs of Schottky split-gates. The gates are
patterned by thermal evaporation of a Ti/Au (10/20 nm) bilayer. The
split-gate gap is 300 nm.

• Sample E: Hall bar fabricated starting from the #HM2411 (b)
heterostructure, with two nominally identical devices, #E1 and #E2.
Each device consists of three Schottky gates, which allows to imple-
ment the QH circuit of Fig. 4.1(b). The gates are patterned by thermal
evaporation of a Ti/Au (10/20 nm) bilayer. The constriction defined
at the device center is 1.2 µm wide and 6 µm long (thus the maximum
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interaction path length for these devices is 6 µm). The gap between
the selector gate (the one which sets the 2DEG filling factor at ν = 2
in Fig. 4.1(b)) and the adjacent one is only 50 nm.

Sample Heterostructure n (cm−2) µ (cm2/Vs) D (nm)

A #6 8 05.1 (a) 1.77×1011 4.6×106 80

C #6 8 05.1 (b) 1.99×1011 4.5×106 80

B #HM2411 (a) 3.2×1011 2.3×106 55

E #HM2411 (b) 3.2×1011 4.2×106 55

D #HM2417 2.11×1011 3.88×106 100

Table C.1: Details of the Al0.3Ga0.7As/GaAs heterostructures used in this
thesis. We report the electron density (n) and mobility µ in the dark for each
sample, as determined by Shubnikov-de Haas measurements, together with the
2DEG depth (D). The structures #6 8 05.1 (a) and #6 8 05.1 (b) have
been obtained from the same wafer, grown by L. N. Pfeiffer and K. W. West
at the Bell Laboratories Lucent Technologies, Murray Hill, NJ, USA. The
differences in the sample density and mobility are due to inhomogeneity (the
sample was not rotated during growth). Similarly the structures #HM2411
(a) and #HM2411 (b) have been obtained from the same wafer, grown
without rotation. Samples #HM2411 (a and b) and #HM2417 have been
grown by G. Biasiol and L. Sorba at the Laboratorio TASC, Basovizza (TS),
Italy.

C.2 Fabrication protocols

C.2.1 Optical lithography

• Clean the sample by means of acetone, then by isopropanol to remove
the acetone.

• Spin (using the UV resist S1818) at 6000 rpm for 60 s.

• Bake at 90◦C for 60 s.

• Dip the sample in the developer solution (MF319) for 20 s. Stop in
de-ionized water.1

• UV exposure for 12 s.

• Bake at 120◦C for 20 s.1

• Dip the sample in the developer solution (MF319) for 30 s. Stop in
de-ionized water.

1Optional surface-hardening procedure to obtain a T-shaped mask.



Appendix C. Nanofabrication protocols 81

C.2.2 Electron-beam lithography using a bilayer mask

• Clean the sample by means of acetone, then by isopropanol in order
to remove the acetone.

• Spin the co-polymer EL-13 at 6000 rpm for 90 s.

• Bake 170◦C for 15 min.

• Spin the polymer A4 at 3500 rpm for 45 s.

• Bake 170◦C for 15 min.

• SEM beam exposure (voltage 30 kV, working distance 10 mm, and
dose of 350-500 µC/cm2).

• Dip the sample in the developer solution (AR 600-56) for 20 s. Stop
in isopropanol for 20 s.

C.2.3 Thermal evaporation and lift-off

• Load the sample in the evaporation chamber. Wait until the chamber
vacuum pressure is less than ≈ 10−5 mbar.

• Evaporate in succession the metal layers (evaporation rates: 0.1-0.5
nm/s).

• Vent the chamber and unload the sample.

• Dip in acetone for at least 15 min.

• Flush with acetone by means of a syringe.

• Clean using isopropanol.

C.2.4 Wet etching

• Dip the sample in the etching solution H3PO4:H2O2:H2O with con-
centration 3:1:50 for 65 s (GaAs etching rate 80 nm/min).

• Stop the etching in de-ionized water.
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C.2.5 Ohmic contact annealing

• Put the sample onto the molybdenum strip in the vacuum chamber.

• Flush and pump the chamber in N2 for 10 min.

• Set the N2 flux to 0.5 l/min.

• Set the current supply to 12.5 A for 70 sec.

• Flush the chamber and remove the sample.
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Glossary

1D: One-dimensional
1DES: One-dimensional electron system
2DEG: Two-dimensional electron gas
AFM: Atomic Force Microscopy
CS: Compressible Stripe
IS: Incompressible Stripe
KPFM: Kelvin Probe Force Microscopy
LHe: Liquid Helium
LL: Landau Level
MZI: Mach-Zehnder Interferometer
QH: Quantum Hall
QPC: Quantum Point Contact
SCM: Scanning Capacitance Microscopy
SET: Single Electron Transistor
SETSE: Single Electron Transistor Scanning Electrometer
SGM: Scanning Gate Microscopy
SPM: Scanning Probe Microscopy
STM: Scanning Tunneling Microscopy
TF: Tuning Fork
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