Tomography and manipulation of quantum Hall edge channels by Scanning Gate Microscopy

Nicola Paradiso

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

Co-workers:

olm

Stefan Heun, Stefano Roddaro, Lucia Sorba, and Fabio Beltram NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

Giorgio Biasiol

Istituto Officina dei Materiali CNR, Laboratorio TASC, Trieste, Italy

Loren N. Pfeiffer and Ken W. West

Department of Electrical Engineering, Princeton University, Princeton, USA

National Enterprise for nanoScience and nanoTechnology

SGM Group

The non-interacting picture of the QH effect

The non-interacting picture of the QH effect

• Edge state picture: *current is carried by chiral 1D channels*

With a QPC we can intentionally induce backscattering, which provides us information about the edge properties

> Roddaro et al.: PRL **90** (2003) 046805 Roddaro et al.: PRL **93** (2004) 046801 Roddaro et al.: PRL **95** (2005) 156804 Roddaro, Paradiso et al.: PRL **103** (2009) 016802

> > National Enterprise for nanoScience and nanoTechnology

SGM Group

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: so far, MZI only work with electron-like excitations. The interference of fractional quasiparticles is inexplicably still elusive

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

MG2

Ji et al.: Nature **422**, 415 (2003)

Preamp

MG1

а

b

Edge channel-based interferometers

The very large coherence length has been exploited to implement complex interferometers as the electronic Mach-Zehnder.

Puzzle: so far, MZI only work with electron-like excitations. The interference of fractional quasi-particles is inexplicably still elusive

An electronic Mach–Zehnder interferometer

Yang Ji, Yunchul Chung, D. Sprinzak, M. Heiblum, D. Mahalu & Hadas Shtrikman

National Enterprise for nanoScience and nanoTechnology

Ji et al.: Nature 422, 415 (2003)

SGM Group

Fractional structures in integer edges

Our first transport measurements found evidences of fractional structures (Luttinger liquid-like) in a single edge (Fermi liquid).

-S. Roddaro, <u>N. Paradiso</u>, et al: "Tuning Nonlinear Charge Transport between Integer and Fractional Quantum Hall States"; Phys. Rev. Lett. **103**, (2009) 016802.

Need for spatially resolved measurements

SGM Group

Non-interacting VS interacting picture

• The self consistent potential due to e-e interactions modifies the edge structure

•For any realistic potential the density goes smoothly to zero.

•Alternating compressible and incompressible stripes arise at the sample edge

Incompressible stripes: •The electron density is constant •The potential has a jump

Compressible stripes: •The electron density has a jump •The potential is constant ←

The SGM setup

Setup:

- AFM non-optical detection scheme (tuning fork)
- With vibration and noise isolation system
- ³He insert (cold finger base temp. :300 mK)
- 9 T cryomagnet

Tuning fork and sample holder

SGM test measurements on QPCs

Branched flow and interference fringes

SGM Group

In the QH regime: edge tomography by SGM

SGM technique: we select individual channels from the edge of a quantized 2DEG, we send them to the constriction and make them backscatter with the biased SGM tip.

- Bulk filling factor v=4
- B = 3.04 T
- 2 spin-degenerate edge channels
- gate-region filling factors g₁ = g₂ = 0

N. Paradiso et al., Physica E 42 (2010) 1038.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 tip position (μm)

SGM Group

Imaging fractional structures in integer channels

Fractional edge reconstruction

Fractional edge reconstruction

The IS width values (colored dots àæòî) obtained from SGM images compare well with the reconstruction picture predictions

Subsequent developments

nature nanotechnology

LETTERS

PUBLISHED ONLINE: 2 DECEMBER 2012 | DOI: 10.1038/NNANO.2012.209

Real-space imaging of fractional quantum Hall liquids

Junichiro Hayakawa¹, Koji Muraki² and Go Yusa^{1*}

¹Department of Physics, Tohoku University, Sendai 980-8578, Japan, ²NTT Basic Research Laboratories, NTT Corporation, Morinosato-Wakamiya, Atsugi 243-0198, Japan. *e-mail: yusa@m.tohoku.ac.jp

Six months after the publication in PRL of our results, another group (Hayakawa *et al.* Tohoku University, Japan) published in Nature Nanotechnology real space images of fractional liquids using a Scanning Confocal Microscopy technique

Conclusions and outline

The inner structure of the edge channels has been directly demonstrated and imaged. Integer edges display fractional substructures.

The SGM maps allowed us to quantitatively test how the IS width depends on the details of the density slope

The SGM is a promising technique for real space investigation and manipulation of the electrons in transport experiments

Thank you for your attention!

Nicola Paradiso Scuola Normale Superiore*, Pisa nicola.paradiso@sns.it

*now at Regensburg University, Germany

SCUOLA NORMALE SUPERIORE

SGM Group

For further information see also the Supplementary Material in:

PRL 108, 246801 (2012)

PHYSICAL REVIEW LETTERS

week ending 15 JUNE 2012

National Enterprise for nanoScience and nanoTechnology

Imaging Fractional Incompressible Stripes in Integer Quantum Hall Systems

Appendix: Individual histograms

Histograms of the occurrence of each G_{τ} value for all the 9 different SGM scans performed at different V_{tip} values. Fractional peaks are visible in each individual histogram.

SGM Group

Appendix: Determination of the IS width

The incompressible stripe width δ_{IS} is obtained starting from the FWHM of the corresponding peak in the histogram (left panel). This range of G_T values defines a circular stripe in the SGM map (right panel). δ_{IS} is given by the average width of such a stripe.

Appendix: Determination of the electron density slope

A displacement δr_t of the SGM tip toward the QPC center reduces the QPC width of the same amount. The corresponding reduction of the filling factor at the QPC center (which is measured as a reduction of $G_T = vG_0$) is approximately given by $\delta r_t/2$ times the filling factor slope.

National Enterprise for nanoScience and nanoTechnology

SGM Group