Efficient *n*-type Doping in Epitaxial Graphene through Strong Lateral Orbital Hybridization of Ti Adsorbate

Jhih-Wei Chen¹, Camilla Coletti², Stefan Heun³, Chao-Hao Chen⁴, and Chung-Lin Wu¹

¹Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan ²Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Pisa 56127, Italy ³NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127 Pisa, Italy ⁴National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan

ABSTRACT

Recently, many different types of doping methods for epitaxial graphene have been demonstrated through atom substitution and adsorption. Then, here we observe by angle-resolved photoemission spectroscopy (ARPES) a coupling-induced Dirac cone renormalization when depositing small amounts of Ti onto epitaxial graphene on SiC. We obtain a remarkably high doping efficiency and a readily tunable carrier velocity simply by changing the amount of deposited Ti. First-principles theoretical calculations show that a strong lateral (non-vertical) orbital coupling leads to an efficient doping of graphene by hybridizing the $2p_z$ orbital of graphene and the 3*d* orbitals of the Ti adsorbate, which attached on graphene without creating any trap/scattering states. This Ti-induced hybridization is adsorbate-specific and has major consequences for efficient doping as well as applications towards adsorbate-induced modification of carrier transport in graphene.

Keywords - Graphene, lateral coupling, titanium, angle-resolved photoemission spectroscopy (ARPES), density-functional theory (DFT)

Introduction

First-Principle calculation

Fig 1. Fermi velocity variation in carrier and dielectric screening

(a)→Fermi velocity variation as the function of carrier density (b)→Fermi velocity variation as the function of carrier density (c)→Schematic illustration for carrier and dielectric screening

bonding electron distribution, and charge transfer from Ti adatom to epitaxial graphene.

Fig 2. The ARPES measurements on graphene with Ti adatoms using an incoming SR photon energy of 52 eV at room temperature.

(a)→Band structure of Ti-doped graphene for 0, 1/700, 1/350, and 1/235 ML coverage, taken along the K→ Γ direction and in the vicinity of the K-point._The energy dispersion is fitted by the MDCs (white dashed lines). The black arrow marks the binding energy position of the Dirac point. The acquired Fermi momentum k_F values are given.

Fig 3. Band dispersion and Ti adatom coverage estimation

(a)→ Dirac velocity in the low-lying valence band depends on Ti coverage. (b)→The Ti coverage calibration obtained by QCM. Deposition conditions and corresponding Ti coverages are listed. The black dashed line shows a least squares fit to the data.

Fig 5. MDCs linewidths used to extract the many-body interaction on pristine and 1/350 ML doped epitaxial graphene.

(a)→MDCs line-shape analysis is carried out by electron-phonon, electron-hole and electron-plasmon interaction.

(b) \rightarrow The electron-plasmon peak shift is associated to the renormalized electronic structures shown in the insert. (c) \rightarrow Ti-3*d* and C-2*p*_z orbital hybridization.

This work is acknowledged to project supported by Ministry of Science and Technology and European Union Seventh Framework Programmer