

ISTITUTO ITALIANO DI TECNOLOGIA

Functionalized graphene as a system for hydrogen storage

Torge Mashoff

26.06.2014

Outline

- Introduction
- Experimental setup
- Titanium on graphene
- Increasing the active surface area by sputtering
- Summary and Outlook

Hydrogen & energy

As a fuel, hydrogen has advantages:

- high energy-to-mass ratio
- $H_2 + 1/2 O_2 \rightarrow H_2O \Delta H = -2.96eV$
- Non-toxic and "clean" (product = water)
- Unlimited resource
- Reduction in CO₂ emission
- Reduction of oil dependency

A hydrogen fuel cell

Graphene for hydrogen storage

- Graphene is lightweight, inexpensive, robust, chemically stable
- Large surface area (~ 2600 m²/g)
- Hydrogen storage possible by chemisorption and physisorption

National Enterprise for nanoScience and nanoTechnology

S. Goler et al.: J. Phys. Chem. C 117, 11506 (2013).

Functionalized graphene

- Graphene can be modified with various chemical species, such as calcium or transisiton metals (Titanium)
- Functionalized graphene has been predicted to adsorb up to 9 wt% of hydrogen

Lee et al., Nano Lett. 10 (2010) 793

Durgen et al., PRB 77 (2007) 085405

UHV-system

Base pressure: <10⁻¹⁰mbar

Manipulator with Heating stage

Experimental setup

for thermal desorption spectroscopy (TDS)

Titanium growth

T. Mashoff et al.: Appl. Phys. Lett. 103, 013903 (2013)

Desorption spectra of D₂ for different Ti-coverages

T. Mashoff et al.: Appl. Phys. Lett. 103, 013903 (2013)

Forming of islands

N₂ - sputtering of the graphene surface

Defects in the graphene film should reduce the mobility of Tiatoms and lead to more and smaller islands.

Clean graphene surface

Sputtered 150s @100eV

10x10 nm², 1V, 0.8nA

Distribution of defects in graphene

Number of Defects per 100nm²

Average size of defects

Energy: 200eV, Ion Current: (5.7 +/- 1) nA

Average number of induced defects per 100nm²

Average number of Islands per 100 nm²

Sputtered 150 s and Deposition of 0.5 ML Titanium

Average diameter of individual Ti-Islands

"Active" 3D-surface per 100nm²

Conclusion and outlook

Experimental demonstration of Ti-functionalized graphene for hydrogen storage

Demonstration of hydrogen adsorption on functionalized graphene

Modifying the size and distribution of Islands by sputtering and increasing the active surface

Outlook: TDS verification of increase in hydrogen uptake

Acknowledgements

NEST – IIT, CNR and Scuola Normale Superiore, Pisa, Italy

D. Convertino V. Miseikis C. Coletti S. Heun V. Piazza F. Beltram

NTT Basic Research Laboratories, Atsugi, Japan

M. Takamura S. Tanabe H. Hibino

Thank you for your attention!

Funding:

Ministero degli Affari Esteri

and the artigo again

