Phosphorene: a new member of 2D family with multifaceted applications in material science

Maria Caporali CNR ICCOM, Florence (ITALY)

2D Materials

Elemental 2D materials

graphene

phosphorene

silicene, germanene, stanene

2D Materials composed by two (or more) elements

Molybdenum disulfide (MoS₂)

Hexagonal boron nitride (*h*-BN)

Anisotropic structure of black phosphorus

Armchair (x-axis)

Anisotropic structure of black phosphorus

Zig-zag (y-axis)

- ✓ On / off ratio: 10³ 10⁵
- ✓ Thermal conductivity (300 K):

✓ *p*-type semiconductor, with a thickness-depending direct band gap (0.3-2.0 eV)

✓ The band gap can be modulated either applying an electrical field or by strain.

Applications of black phosphorus

Flat.Chem. 2017, 2, 15-37

Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility

Han Liu,^{†,‡} Adam T. Neal,^{†,‡} Zhen Zhu,[§] Zhe Luo,^{‡,⊥} Xianfan Xu,^{‡,⊥} David Tománek,[§] and Peide D. Ye^{†,‡,*}

[†]School of Electrical and Computer Engineering and [‡]Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States, [§]Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824, United States, and [⊥]School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States

ASC Nano, 2014, 8, 4033.

DSSC based on black phosphorus quantum dots

FTO: fluorine-doped tin oxide PANI: polyaniline film PCE: 6.8%, increase of 20% in presence of BPQDs Adv. Mat. 2016, 28, 8937-8944.

OPVs based on black phosphorus quantum dots

Adv. Funct. Mat. 2016, 26, 864-871.

OPVs based on black phosphorus quantum dots

Phosphorene as co-catalyst in H₂ production

Quantum yield of 34% at 420 nm!!

Zhang Qiao et al., Angew. Chem. Int. Ed. 2017, doi: 10.1002/anie.201703827

Phosphorene as co-catalyst in H₂ production

2D BP and $g-C_3N_4$ (graphitic carbon nitride) as metal-free photocatalyst in water:

JACS 2017, doi:10.1021/jacs.7b08416

Preparation of few-layer BP

Ye et al. ACS Nano 2014, 8, 4033; Zhang, Nat. Nanotechnol. 2014, 9, 372

✓ Liquid phase exfoliation

Chem. Commun. **2014**, 50, 13338; *Nano Lett.* **2014**, *14*, 6964; *ACS Nano* **2015**, *9*, 3596; *Adv. Mat.* **2015**, *27*, 1887; *2D Materials*, **2014**, *1*, 11002.

Synthesis of Black Phosphorus

SEM of black Phosphorus

Liquid-phase exfoliation

M. Serrano-Ruiz, M. Caporali, A. Ienco, V. Piazza, S. Heun, M. Peruzzini, *Adv. Mat. Interfaces* **2016**, 3, 1500441.

Manyor at seated a point of the provide the state of the property dates of the provident for any or a first of the provident of

									ПΤ
30	20	10	0	-10	-20	-30	-40	-50	
ppm (t1)									

High Resolution ESI-MS

Liquid-phase exfoliation

M. Serrano-Ruiz, M. Caporali, A. Ienco, V. Piazza, S. Heun, M. Peruzzini, *Adv. Mat. Interfaces* **2016**, 3, 1500441.

2D Black Phosphorus: characterization

M. Caporali, M. Serrano Ruiz, M. Peruzzini et al. Chem. Commun. 2017 in press.

HAADF STEM on Ni/2D BP

STEM-EELS gave chemical information of the surface of the nanohybrid.

Raman: comparison between pristine 2D BP and Ni/2D BP

Atomic Force Microscopy

XRD: 2D black P

XRD: Ni NPs

XRD: Ni/2D BP

Ambient stability of Ni/2D BP

Environmental instability of black Phosphorus hampers its application: see 2D Mater. **2015**, 2, 011002.

The degradation is influenced by the following key-factors:

Angew. Chem. Int. Ed. 2016, 55, 11437-11441

Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus

Jinshui Miao,[†] Le Cai,[†] Suoming Zhang,[†] Junghyo Nah,[§][®] Junghoon Yeom,[‡] and Chuan Wang^{*,†}[®]

[†]Electrical and Computer Engineering and [‡]Mechanical Engineering, Michigan State University, East Lansing, Michigan 48824, United States

[§]Electrical Engineering, Chungnam National University, Daejeon 34134, Korea

Passivation strategies

The solution to avoid degradation is capping BP to minimize its interaction with the ambient:

- ✓ passivation with Al₂O₃, SiO₂, PMMA, ionic liquis, AgNO₃;
- ✓ surface coordination and covalent functionalization;
- \checkmark sandwiched BP heterostructures with graphene, *h*-BN.

 Capping of BP with 2D materials as graphene or *h*-BN have provided a stability for a period of 18 days.

Our conditions: samples exposed to air and humidity, no light

As a comparison, six flakes of Ni/2D BP and of pristine 2D BP kept in the same conditions were observed by TEM along four months.

time 0

after 2 weeks

time 0

after 1 week

After 8 days, pristine BP flakes degrade completely to molecular phosphates.

time 0

after 2 weeks

time 0

after 1 week

time 0

after 2 weeks

time 0

after 1 week

time 0

after 2 weeks

time 0

after 2 months

time 0

after 3 months

time

after 1 week

time 0

after 24 days

time 0

after 1 week

time 0

after 2 weeks

time 0

after 1 week

time 0

after 2 weeks

Preparation of Au/2D-BP

Raman of Au/2D BP

XPS

Sample kept in ambient conditions, but in absence of light

time 0

after 1 year

Semihydrogenation of phenylacetylene

Entry	Conversion (%)	Selectivity to styrene (%)	S/cat	T (°C)
Ni NPs	100.0	78.6	56.0	80
2D BP	0.0	-	-	80
Ni/2D BP	93.2	92.8	56.0	80
Ni/Al ₂ O ₃	99.6	0.7 ^a	16.5	100
Ni/MgO	98.5	36.0 ^b	15.0	50
Ni@C	99.8	59.6 ^c	-	100-150

^aACS Catal. **2015**, *5*, 5756: 2 hours, 3 bar H₂

^b Chem. Cat. Chem. **2014**, 6, 824: 5 bar H₂, 2 h

^c Carbon 2014, 74, 291: flow bed reactor.

Semihydrogenation of phenylacetylene

Recycling Ni/2D BP

ICP-AES: no leaching of nickel

Ni/2D BP after catalysis

Summary

- Nickel nanoparticles were dispersed on the surface of few-layer black phosphorus achieving a new nanohybrid Ni/2D BP.
- Ni/2D BP catalyzed successfully the semihydrogenation of phenylacetylene and showed high selectivity to styrene.
- The catalytic activity and selectivity remained unaltered after recycling tests.
- The functionalization with Ni NPs inferred high stability to exfoliated black P in ambient conditions.

Acknowledgements

European Research Council Established by the European Commission

CNR-ICCOM (Firenze):

Maurizio Peruzzini Manuel Serrano Ruiz Matteo Ceppatelli Andrea Ienco Gabriele Manca **CNR-NANO (Pisa):**

Stefan Heun

Francesca Telesio

Shaohua Xiang

University of Florence Stefano Caporali

CNR-IMM (Catania): Giuseppe Nicotra Corrado Spinella

PHOSFUN "Phosphorene functionalization: a new platform for advanced multifunctional materials".

