2D-BLACK PHOSPHORUS FUNCTIONALIZED WITH METAL NANOPARTICLES: FULL CHARACTERIZATION AND CATALYTIC ACTIVITY ON HYDROGENATION REACTIONS

Outline

Intro

- •2D-black phosphorus (BP): a new wonder material
- 2D-BP as novel support for metal nanoparticles

Experimental section

- Preparation and characterization of 2D-BP functionalized with TM nanoparticles
- Preliminary study on phenylacetylene hydrogenation catalyzed by NiNPs/2D-BP

Outline

Intro

- •2D-black phosphorus (BP): a new wonder material
- 2D-BP as novel support for metal nanoparticles

Experimental section

- Preparation and characterization of 2D-BP functionalized with TM nanoparticles
- Preliminary study on phenylacetylene hydrogenation catalyzed by NiNPs/2D-BP

EWPC-13

salvatore.interlandi@iccom.cnr.it

2D-Materials

- -Microelectronics
- -Optoelectronics
- -Catalysis
- -Chemical and biological sensors
- -Supercapacitors
- -Solar cells
- -Lithium ion batteries

Elemental 2D-Materials

2D-black phosphorus (BP): a new wonder material?

Li, L.; Yu, Y.; Ye, G. J.; Chen, X. H.; Zhang, Y. Electronic Properties of Few-Layer Black Phosphorus. In APS March Meeting; American Physical Society: College Park, MD, 2013; abstract ID Most of the breakthroughs in this field are still to come. The Journal of Physical Chemistry Letters Perspective DOI: 10.1021/acs.jpclett.5b01686 J. Phys. Chem. Lett. 2015, 6, 4280–4291 4286 BAPS.2013.MAR.J6.13, <u>http://meetings.aps.org/Meeting/MAR13/</u> Session/J6.13.

EWPC-13

salvatore.interlandi@iccom.cnr.it

2D-BP: a new wonder material?

The renaissance of black phosphorus

Xi Ling^a, Han Wang^{b,1}, Shengxi Huang^a, Fengnian Xia^c, and Mildred S. Dresselhaus^{a,d,1}

^aDepartment of Electrical Engineering and Computer Science and ^dDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139; ^bMing Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089; and ^cDepartment of Electrical Engineering, Yale University, New Haven, CT 06511

Crystal structure of BP

EWPC-13

salvatore.interlandi@iccom.cnr.it

Anisotropic structure of BP

Zig-zag (y-axis)

EWPC-13

salvatore.interlandi@iccom.cnr.it

Anisotropic structure of BP

Armchair (x-axis)

EWPC-13

salvatore.interlandi@iccom.cnr.it

2D-BP: highlights

 \checkmark Semiconductor, with a thickness-dipendent direct band gap (\sim 2 - 0.3 eV)

✓ Good carrier mobility (\sim 1000 cm² V⁻¹ s⁻¹ at room temperature)

✓ High surface area

✓Higher chemical reactivity compared to other 2D-materials stable in free standing form

- Careful handling in inert environments/encapsulation/passivation
- Controllable/mild chemical functionalization (not possible for graphene)

 \checkmark Semiconductor, with a thickness-dipendent direct band gap (\sim 2 - 0.3 eV)

- -Communication
- -Light vision goggles
- -Thermal infrared imaging
- -Astronomy
- -Medicine
- -Document security systems
- -DVD players
- -Display
- -LED, OLED

2D-BP: highlights

 \checkmark Semiconductor, with a thickness-dipendent direct band gap (\sim 2 - 0.3 eV)

✓ Good carrier mobility (\sim 1000 cm² V⁻¹ s⁻¹ at room temperature)

✓ High surface area

✓Higher chemical reactivity compared to other 2D-materials stable in free standing form

- Careful handling in inert environments/encapsulation/passivation

- Controllable/mild chemical functionalization (not possible for graphene)

2D-BP functionalization: a coordination approach?

2D-BP functionalization: a coordination approach?

Outline

Intro

•2D-black phosphorus (BP): a new wonder material

• 2D-BP as novel support for metal nanoparticles

Experimental section

• Preparation and characterization of 2D-BP functionalized with TM nanoparticles

Preliminary study on phenylacetylene
hydrogenation catalyzed by NiNPs(TOP)/2D-BP

Preparation of 2D-BP

[§]Prepared as described in: T. Nilges, M. Kersting, T. Pfeifer, J. Solid State Chem. **2008**, 181, 1707-1711.

[£]Exfoliation conditions as described in: M. Serrano-Ruiz, M.

Caporali, A. Ienco, V. Piazza, S. Heun, M. Peruzzini, Adv, Mat. Interfaces 2015, 3, 1500441.

Bright-field TEM image of 2D-BP

M. Serrano-Ruiz, M. Caporali, A. Ienco, V. Piazza, S. Heun, M. Peruzzini, Adv, Mat. Interfaces 2015, 3, 1500441.

EWPC-13

salvatore.interlandi@iccom.cnr.it

AFM analysis of 2D-black phosphorus

M. Serrano-Ruiz, M. Caporali, A. Ienco, V. Piazza, S. Heun, M. Peruzzini, Adv, Mat. Interfaces 2015, 3, 1500441.

EWPC-13

salvatore.interlandi@iccom.cnr.it

Extraction of 2D-BP from the DMSO of exfoliation

Solvent, Ultrasound 37 kHz, 30"

EWPC-13

salvatore.interlandi@iccom.cnr.it

Preparation of NiNPs/2D-BP

§ Prepared as described in: N. Mezailles et al. Nano Today 2012, 7, 21.

EWPC-13

salvatore.interlandi@iccom.cnr.it

TEM image of NiNPs/2D-BP

EWPC-13

salvatore.interlandi@iccom.cnr.it

Size distribution of NiNPs anchored on 2D-BP

Preparation and TEM analysis of PdNPs/2D-BP

EWPC-13

salvatore.interlandi@iccom.cnr.it

Preparation and TEM analysis of AuNPs/2D-BP

[§]Prepared as described in: Yang, J. Dong, Z. Yao, C. Shen, X. Shi, Y. Tian, S. Lin, X. Zhang, Sci. Rep. **2014**, 4, 4501.

EWPC-13

salvatore.interlandi@iccom.cnr.it

Preparation and TEM analysis of RuNPs/2D-BP

Outline

Intro

•2D-black phosphorus (BP): a new wonder material

• 2D-BP as novel support for metal nanoparticles

Experimental section

• Preparation and characterization of 2D-BP functionalized with TM nanoparticles

• Preliminary study on phenylacetylene hydrogenation catalyzed by NiNPs/2D-BP

Phenylacetylene hydrogenation catalyzed by NiNPs

Solvent	Temperature (°C)	Time (h)	Conv. (%)*	Selectivity toward styrene(%)*
toluene	80	2	2.2	51.1
toluene/DMSO				
1:3	80	1	77.9	94.3
toluene/DMSO				
1:3	80	2	99	96.1

* Evaluated by GC

EWPC-13

Phenylacetylene hydrogenation catalyzed by NiNPs(TOP)/2D-BP

Nicat = NiNPs

Nicat = NiNPs/2D-BP (P:Ni = 2)

Time (h)	Conv. (%)*	Selectivity toward styrene(%)*
1	77.9	94.3
2	99	96.1

Time (h)	Conv. (%)*	Selectivity toward styrene(%)*
1	45.4	94.3
2	96.2	94.9

* Evaluated by GC

EWPC-13

Recycling the catalyst NiNPs/2D-BP

n	Conversion (%)*	Selectivity towards styrene(%)*
1	96.2	94.9
2	91.9	94.7
3	86.9	95.1
4	73.2	95.2
5	66.6	95.6

^sCatalyst was isolated by centrifugation (6000 rpm x 2 with acetone) before every recycling test

* Evaluated by GC

EWPC-13

salvatore.interlandi@iccom.cnr.it

Future work and perspectives

 \checkmark <u>Evaluate</u> the effective heterogeneity of the studied catalytic system NiNPs/2D-BP (hot filtration tests, leaching tests...) and run a comparison of 2D-BP with other 2D-supports for metal nanoparticles (graphene, carbon nanotubes...).

 \checkmark <u>Explore</u> the catalytic activity of the other nanocomposites, RuNPs/2D-BP, PdNPs/2D-BP and AuNPs/2D-BP in several reactions.

✓ <u>Clarify</u> the nature and strenght of the interactions between TM nanoparticles and 2D-BP, using appropriate instrumental techniques (Raman, XPS spectroscopy ...).

 \checkmark <u>Study</u> the chemical and physical properties of the nanocomposites, in order to <u>expand</u> their uses in other fields (e. g. microelectronics, optoelectronics).

Outline

Intro

- •2D-black phosphorus (BP): a new wonder material
- 2D-BP as novel support for metal nanoparticles

Experimental section

- Preparation and characterization of 2D-BP functionalized with TM nanoparticles
- Preliminary study on phenylacetylene hydrogenation catalyzed by NiNPs/2D-BP

Acknowledgements

CNR-ICCOM:

- -Maria Caporali
- -Maurizio Peruzzini
- -Manuel Serrano Ruiz
- -Matteo Ceppatelli
- -Andrea Ienco
- -Gabriele Manca

CNR-IMM: -Giuseppe Nicotra

COM

CNR-NANO: -Stefan Heun -Francesca Telesio -Shaohua Xiang

European Research Council Supporting top researchers from anywhere in the world

The authors thank the European Research Council for funding the project PHOS*FUN "Phosphorene functionalization: a new platform for advanced multifunctional materials"* (Grant Agreement No. 670173) through an ERC Advanced Grant to MP.

EWPC-13

salvatore.interlandi@iccom.cnr.it