Rapid CVD growth of millimetre-sized single-crystal graphene using a cold-wall reactor

Vaidotas Mišeikis

1. Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
2. Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
3. NEST, Istituto Nanoscienze—CNR and Scuola Normale Superiore, Pisa, Italy
4. Dipartimento di Fisica, Università di Genova, Genova, Italy
5. CNR-SPIN, Genova, Italy
Large-scale applications of CVD graphene

Innovations for industry adoption:

• Roll-to-roll processing allows high throughput

• CMOS integration: growth of graphene on 30-inch wafers

• Etchant-free electrochemical transfer allows re-using the substrate

Rahimi, S. et al.

Wang, Y. et al
Large-crystal CVD graphene: avoiding grain boundaries

- Electrical properties can be comparable to exfoliated flakes.
- Single crystals can be as large as several mm (even cm).

BUT, the use of single-crystal CVD graphene in applications still not very common. Why?
- Large-crystal growth not trivial to implement due to high variability between different systems.
- Very long growth times required for mm-sized crystals.

Our CVD system: Aixtron BM Pro

- Cold-wall reactor
- 4-inch heating stage
- Bottom + top heater

Standard growth procedure:
25 mbar
Copper annealing in hydrogen
1060 °C bottom + 950 °C top
1 sccm CH$_4$ + 980 sccm Ar + 20 sccm H$_2$ (optional?)

Continuous film grown in 5 minutes

Good-quality and highly repeatable growth, but polycrystalline, with grain size limited to ~10 µm.
Reducing the nucleation density

Hydrogen annealing

• High nucleation density (~10 000 per mm²)
• Growth along the copper foil rolling grooves
• Compact edges

Argon annealing

• Reduced nucleation density (~1 000 per mm²)
• Growth distributed more randomly
• Dendritic edges characteristic of oxygen-assisted growth (Hao et al. Science 342, 720–3 (2013))
• Large (up to several mm) Cu crystal domains

Argon annealing inside an enclosure

• Significantly reduced nucleation density (~5-10 per mm²)

V. Miseikis et al. 2D Materials 2, 014006 (2015)
Sample enclosure

- 6 mm-thick graphite spacers placed directly on the bottom heater
- Sample and the spacers covered with a quartz disk
- Limits gas flux and creates more equilibrium conditions (10 cm3 vs 21 litres)
- Reduces the deposition of evaporated copper in the main chamber
Reducing the nucleation density

Hydrogen annealing
- High nucleation density (~10,000 per mm²)
- Growth along the copper foil rolling grooves
- Compact edges

Argon annealing
- Reduced nucleation density (~1,000 per mm²)
- Growth distributed more randomly
- Large (up to several mm) Cu crystal domains

Argon annealing inside an enclosure
- Significantly reduced nucleation density (~5-10 per mm²)

V. Miseikis et al. 2D Materials 2, 014006 (2015)

Vaidotas Mišeikis | Graphene 2015, Bilbao
The effect of oxygen content in copper

Thermally oxidised high purity foil 2 min @ 180 °C

Low purity foil (99.8%) / high oxygen content

Growth with Ar annealing

High purity foil (99.98%) / low oxygen content

Growth with Ar annealing

2 min @ 180 °C

Growth with Ar annealing

Thermally oxidised high purity foil
Flat foil: graphene crystals approaching 1 mm

- Growth rate linear ~15 µm/min
- Up to 750 µm crystals grown before they start merging
Growth using copper “pocket”

- Nucleation significantly lower than 1 crystal per mm2
- Growth of up to 3.5 mm single-crystals in 3 hours
- PMMA transfer can be challenging due to foil deformation

Separate graphene crystals formed on a single Cu crystal domain have the same orientation.

Visible with SEM, confirmed with LEED.
Raman spectroscopy

- No D-peak indicates high crystal quality
- $I(2D) / I(G) \sim 3$
- FWHM (2D) $\sim 29 \text{ cm}^{-1}$
- Homogeneous Raman signature over the whole transferred crystal
Conclusions

- Key factors for the growth of mm-scale graphene single crystals
 - Cu substrate chemistry (primarily, oxygen content)
 - annealing conditions (argon instead of hydrogen)
 - use of enclosure (external enclosure and/or copper “pocket”)
- High quality of synthesised graphene
- The growth is fast, allows routine production of mm-scale graphene crystals for applications.
Acknowledgements

Laboratorio NEST, Pisa, Italy
Stefano Roddaro, Francesco Rossella

Aixtron LTD, Cambridge, UK
Ken Teo, Nalin Rupesinghe, Paul Greenwood

Thank you for your attention!

Further information:
V. Miseikis et al. 2D Materials 2, 014006 (2015)