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Introduction 

Exfoliated graphene 

• Excellent quality. 

• No need for special equipment. 

• Small flakes, random shape. 

• Poor scalability. 
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• Fast and reliable growth. 
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• Lower graphene quality 

(polycrystalline, defects and 
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CVD-grown single crystal graphene 

• Excellent quality. 

• Excellent size and regular shape. 

• Fast and reliable growth. 

• Excellent scalability. 

 

 

 

CVD-grown graphene 

• Excellent size. 

• Fast and reliable growth. 
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(polycrystalline, defects and 

contamination). 

 

Introduction 

Exfoliated graphene 

• Excellent quality. 

• No need for special equipment. 

• Small flakes, random shape. 

• Poor scalability. 

We fabricated several devices that we tested in magneto-transport at low 

temperature to prove its good electronic quality. 
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CVD graphene growth 

• Graphene grown on copper. 

• Chemical reaction: 

• Growth in a commercial reactor to increase reproducibility. 

• Improvements: 

 Number of nucleation sites drastically reduced (oxidized copper). 

 Semi-dry technique to detach graphene from copper (electrochemical delamination). 
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CVD graphene growth 

• Monocrystalline graphene flakes extended up to several millimeters. 

• Fast growth (1mm per hour). 

• High crystalline quality already shown with SEM, TEM, Raman, SAED, LEED, XPS. 
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Electron transport characterization 

• Graphene transferred on 300nm of SiO2 

(n++ doped Si substrate used as a 

backgate). 

• Hallbar fabricated (approx. 50µm x70µm). 
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Electron transport characterization 

• Graphene transferred on 300nm of SiO2 

(n++ doped Si substrate used as a 

backgate). 

• Hallbar fabricated (approx. 50µm x70µm). 

• Four voltage probes used to measure 

longitudinal and transversal (Hall) 

resistance, respectively: 

  Rxx=V12/ISD 

  Rxy=V14/ISD 

• No sample annealing in order to measure the 

graphene «as is». 

• He-3 cryostat, temperature range:  

  0.25K - 20K 

• Out of plane magnetic field, range: 

  0 - 10 Tesla 



S. Xiang, V. Miseikis, L. Planat, S. Guiducci, S. Roddaro, C. Coletti, F. Beltram, S. Heun,  
Nano research 2016, 9 (6): 1823-1830 

Electron transport characterization 

• µ=1.13x104cm2/Vs (mobility at 250mK). 

• VDirac=+9V 

• n(VBG=0)=-6.5x1011cm-2 (p-doped) → 

       → Low intrinsic carrier concentration 

  (in fact values in the 1012 cm-2 range        

  are reported for CVD polycrystalline  

  graphene and with the substrate  removed 

  by wet etching). 
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Quantum Hall 
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Weak localization 

• Well estabilished phenomenon due to quantum interference. 

• Requires that Le < Lφ.  

• A non-zero magnetic field breaks time reversal symmetry 

suppressing quantum interference. 

• High temperature suppresses quantum interference.  
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Weak localization 

• Well estabilished phenomenon due to quantum interference. 

• Requires that Le < Lφ.  

• A non-zero magnetic field breaks time reversal symmetry 

suppressing quantum interference. 

• High temperature suppresses quantum interference.  

• E. McCann et al., Phys. Rev. Lett. 97, 146805 (2006) :  
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Weak localization 

• Both L* and Liv only weakly depend on VBG and temperature. 

• Stronger dependence of Lφ from VBG and temperature. 

• Lφ > 1µm (at T = 0.25K). 
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Weak localization 
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Weak localization 

• Lφ minimum at the Dirac point (limited by the size of charge puddles). 

• Where τφ(T-1)  is flat the dephasing time is limited by the charge puddles. 

• Lφ and τφ saturate at different values when changing VBG (the size of the charge puddles changes with VBG).  

• τ-1
φ(g(n)) fit with Nyquist formula: where the fit agrees with data e-e is the main inelastic scattering mechanism. 

 



S. Xiang, V. Miseikis, L. Planat, S. Guiducci, S. Roddaro, C. Coletti, F. Beltram, S. Heun,  
Nano research 2016, 9 (6): 1823-1830. 

Weak localization 

• Lφ minimum at the Dirac point (limited by the size of charge puddles). 

• Where τφ(T-1)  is flat the dephasing time is limited by the charge puddles. 

• Lφ and τφ saturate at different values when changing VBG (the size of the charge puddles changes with VBG). 

• τ-1
φ(g(n)) fit with Nyquist formula: where the fit agrees with data e-e is the main inelastic scattering mechanism. 

• In the range where τφ  ∝ T-1 electron-electron interaction is the main inelastic scattering mechanism.  
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Conclusions 

We studied large monocrystalline CVD graphene flakes on SiO2. 

 

 

High mobility and low intrinsic charge carriers measured. 

 

 

Observed 12 well developed quantum Hall plateaus. 

 

 

Studied weak localization and measured a dephasing length above 1µm. 

 

We showed that the e-e scattering is the main inelastic scattering mechanism. 

 

 

The quality of our CVD single crystal graphene is good and comparable 

to what is measured in exfoliated graphene. 
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