Black Phosphorus Field Effect Transistors: Passivation By Oxidation, and the Role of Anisotropy in Magnetotransport

Tomasz Szkopek

Electrical and Computer Engineering, Physics

layered materials

layered materials

C (graphite)

BN (white graphite)

P (black-P)

MoS₂ (transition metal dichalcogenide)

 MgB_2

 $KAI_2(AISi_3O_{10})(OH)_2$ (mica)

YBa₂Cu₃O_{7-x} (high-T_c cuprate)

GaSe (group III monochalcogenide)

Hgl₂ (transition metal Bi₂Se₃ (sesquichalcogenid e)

black phosphorus (bP)

1914: Bridgman produces first bP

1953: Keyes studies bP as a semiconductor

1968: Berman & Brandt; Witting & Mattias observe superconductivity at high pressure

1970's - **1980's**: burst of activity in Japan on electronic properties, Raman, cyclotron resonance

2014: ultra-thin bP FETs reported by Yuanbo Zhang (Fudan) and Peide Ye (Publik) band gap = 0.3 eV

monolayer band gap ≈ 1.2 eV

A. Morita, "Semiconducting Black Phosphorus", Appl. Phys. A39, 227 (1986).

bP anisotropy

Fengnian Xia..., Nature Comm. 2014, Nature Comm. 2015.

cyclotron effective mass

	m _x	m _y	mz
electron	0.083	1.027	0.128
hole	0.076	0.648	0.280

S. Narita, et al. J. Phys. Soc. Jpn. **52**, 3544 (1983)

bP photo-oxidation

Rapid bP photo-oxidation with combination of O_2 , H_2O and light

A. Favron R. Martel, Nature Materials, 2015

outline

- oxidation for top-gated field effect transistors
- weak-localization & magnetorsistance and anisotropy

manuscript in preparation

oxidation for passivation and thinning

formation y PL efficiency is preserved. Can oxidation be used for gate dielectrics?

Jiajie Pei, Xin Gai, ... B. Luther Davies, Yurei Liu, Nature Comm., 2015.

bP FET fabrication

bulk bP source: >99.9% purity

exfoliation & processing in glove box O_2 , $H_2O < 1ppm$

e-beam lithography, Ti/Au contacts

oxidation: 200 mTorr, 300 W RF, 1-3 minutes

e-beam lithography, Ti/Au top gates

etch rate by oxidation

oxidation: 10sccm O₂, 200 mTorr, 300 W RF

etch rate: 0.10 nm/s or ~0.5 bP layers/s

XPS + TEM

oxidation of bulk bP crystal

XPS: elemental P and P_2O_5 present

oxidation of bP flake on SiO₂/Si

TEM: amorphous layer (< 6nm thick), interfacial roughness with bP

field effect

12

field effect mobility

mobility limiting mochanisms

V. Tayari et al., Phys. Rev. Applied 5, 064004 (2016)

future: split gate transistors

GaAs/AIGaAs quantum point contacts

M.A. Topinka, et al., Science **289**, 2323 (2000).

bP split-gate

outline

- oxidation for top-gated field effect transistors
- weak-localization & magnetorsistance and anisotropy

N. Hemsworth, V. Tayari, F. Telesio, S. Xiang, S. Roddaro, M. Caporali, A. Ienco, M. Serrano-Ruiz, M. Peruzzini, G. Gervais, T. Szkopek, and S. Heun, Dephasing in strongly anisotropic black phosphorus, Phys. Rev. B **94**, 245404 (2016).

anisotropy : Raman spectroscopy

armchair (x)

17

magnetoresistance

weak localization

2 3

0

B (T)

1

-3 -2 -1

2

n

B(T) 19

3

weak localization – fit with theory

$$\Delta \sigma(B) = -\frac{e^2}{2\pi^2 h} \left[\Psi\left(\frac{1}{2} + \frac{B_0}{B}\right) - \Psi\left(\frac{1}{2} + \frac{B_{\varphi}}{B}\right) \right]$$

$$\Psi(x) = \text{digamma function}$$

$$P(x) = \frac{\Phi}{\Phi_0}$$

$$P(x) = \frac{\Phi}{\Phi_0}$$

$$P(x) = \frac{\Phi}{\Phi_0}$$

$$\Phi_0 = \frac{\Phi}{\Phi_0}$$

$$P(x) = \frac{\Phi}{\Phi}$$

$$P(x) = \frac{$$

S. Hikami, A I. Larkin, and Y. Nagaoka, Prog. of Theor. Phys. **63**, 707 (1980).

localization & anisotropy

Electron-electron scattering in a diffusive 2D conductor: $\int_{0}^{\infty} \sigma T^{-1/2}$

 $\tau_{\varphi} = T^{-1}$ Altshuler, Khmelnitzkii, Larkin, Lee, PRB (1980). Abrahams, Anderson, Lee, and Ramakrishnan, PRB (1981).

Electron-electron scattering in a diffusive 1D conductor: $\int_{a} \propto T^{-1/3}$

 $\tau_{\varphi} = T^{-2/3}$ Appenzeller, Martel, Avouris, Stahl, Hunger, Lengeler, PRB (2001). 21 Natelson, Willett, West, and Pfeiffer, PRL (2001).

future: pnictogens

puckered honeycomb

As, Sb, Bi : buckled honeycomb

the team

Vahid Tayari

Nick

Hemsworth

Francesca Telesio

Will Dickerson

lbrahim Fakih

Maurizio Peruzzini Firenze

Guillaume Gervais McGill

> Tomasz Szkopek McGill

Fonds de recherche sur la nature et les technologies Québec 🔹 😫

CANADIAN INSTITUTE for ADVANCED RESEARCH

Canada Research Chairs

23

thank you