(Suppression of) Dephasing in a Field-Effect Black Phosphorus Transistor

Guillaume Gervais (Physics) and Thomas Szkopek (Electrical Eng.)

July 28, 2016

This talk contains no quantum Hall effect at 🤗.

Due Credit for Black Phosphorus FETs

The Device-maker boss: **Prof. Thomas Szkopek**, McGill Electr. Engineering

CNR-Florence, Italy: M. Caporali, A. Ienco, M. Serrano-Ruiz, M. Perruzin (material synthesis)

Scuola Normale Pisa: *Dr. Heun*, F. Telesio, S.Xiang, S. Roddaro (weak localization)

a little army of "one" @ McGill

Vahid Tayari

Nick Hemsworth

Ibrahim Fakih

Introduction

Layered Materials I

Layered Materials II

C (graphite)

BN (white graphite)

MoS₂ (transition metal dichalcogenide)

 MgB_2

(mica)
(mica)

YBa₂Cu₃O_{7-x} (high-T_c cuprate)

GaSe (group III monochalcogenide)

Hgl₂ (transition metal Bi₂Se₃ (sesquichalcogenid e)

Black Phosphorus

Only the second elemental allotrope that can be mechanically exfoliated down to the single atomic layer limit.

Black Phosphorus (bP)

1914: Bridgman produces first bP

1953: Keyes studies bP as a semiconductor

1968: Berman & Brandt; Witting & Mattias observe superconductivity at high pressure

1970's - **1980's**: burst of activity in <u>Japan</u> on electronic properties, Raman, cyclotron resonance

2014: ultra-thin bP FETs reported by Peide Ye (Purdue), Yuanbo Zhang (Fudan) and Jeanie Lau (UC Riverside)

Puckered honeycomb layers Bulk band gap = 0.3 eV Monolayer band gap ~ 1.2 A. Morita, "Semiet nducting Black Phosphorus", Appl. Phys. **A39**, 227 (1986).

Black Phosphorus (bP)

A. Morita, "Semiconducting Black Phosphorus", Appl. Phys. A39, 227 (1986).

Black Phosphorus (bP)

Xiang et al., Phys. Rev. Lett. 115, 186402 (2015)

<u>DP Photo-oxidation: 20s of Ambient Air and</u> Light

Rapid bP photo-oxidation with combination of O_2 , H_2O and light.

A. Favron ... R. Martel, "*Photo-oxidation and quantum confinement effects in exfoliated black phosphorus*", Nature Materials (2015).

Device Fabrication and Measurements

<u>bP FET Fabrication : Top Approach</u>

Prof. Yuanbo Zhang, Fudan

bP FET Fabrication : a Poor Man's Approach

bulk bP source: 99.98% purity (Smart Elements)

exfoliation & processing in glove box

 O_2 , $H_2O < 1ppm$

e-beam lithography & Ti/Au contacts

encapsulation with MMA/PMMA

avoid simultaneous O_2 , H_2O , and Our best mobility: $\overset{\text{light}}{\sim} 000 \text{ cm}^2/\text{V.s}$

Shubnikov – de Haas Oscillations

V. Tayari,G. Gervais, R. Martel, T. Szkopek Nature Communications (2018 Communications (2018) Communicati

Temperature Dependence of SdH

V. Tayari,G. Gervais, R. Martel, T. Szkopek Nature Communications (2015 Cervais Lab

Independent Findings

Independent work regarding SdH

Jeanie Lau @ UC Riverside:

N. Gillgren et al., *Gate tuneable quantum oscillations in air-stable and high-mobility few-layer phosphorene heterostructures*, 2D Materials 2015.

Yuanbo Zhang @ Fudan:

L. Li et al., *Quantum oscillations in black phosphorus two-dimensional electron gas*, Nature Nanotechnology 2015.

Ning Wang @ HKUST:

X. Chen et al., *High quality sandwiched black phosphorus heterostructure and its quantum oscillations*, Nature Communications 2015.

Gervais/Szkopek @ McGill + Martel @ UdeM team:

V. Tayari et al., *Two dimensional magnetotransport in a naked black phosphorus quantum well*, Nature Communications 2015.

🐯 McGill

New Developments in Bp: Device Engineering

Dual Gated Velocity Modulator (Engineering)

V. Tayari,G. Gervais, T. Szkopek Phys. Rev. Applied 5, 064004 (2015)

See Talk by Prof. Szkopek @ ICPS

Monday 14h: 2D Materials beyond graphene (Mo-E3)

Dual Gate Black Phosphorus Velocity Modulated Transistor

Nicholas Hemsworth[‡], Vahid Tayari[‡], O. Cyr-Choinière[‡], W. Dickerson[‡] Guillaume Gervais[‡], Thomas Szkopek[‡], [‡]McGill University, Montréal, Canada,

The layered semiconductor black phosphorus (bP) has attracted attention as a 2D atomic crystal (Fig. 1a) that can be prepared in ultra-thin layers for operation as field effect transistors (FETs). We report here an experimental investigation[1] of the transport characteristics of bP FETs with an asymmetric dual gate geometry consisting *K* top and bottom gate electrodes (Fig. 1b,c,d) that enables operation of the dual gate of FIGT as a velocity modulated transistor (VMT), first proposed by Sakaki[2] to overcome carrier hansit time limitations to transistor speed. The exfoliated bP quantum well was me surely atomic force microscopy to be 32nm thick, and self-consistent Schrödinger-Poisson calculations indicate that the top gate potential V_{TG} is effective at modulating the charge density distribution through the bP quantum well at a fixed charge density required by the back gate potential V_{BG} (Fig. 1e). Room temperature transconductal V_{BG} , ∂V_{BG} was measured in quasi-dc swept mode at constant bias current $I_{DS}=4\mu x$. Comparison of top gate and back gate transconductance revealed that the hole gas induced by the back gate has a mobility substantially greater than the hole gas induced by me top gate likely due to asymmetry in bP surface quality. The top gate potential is found to headlabe the back-gate transconductance by four-fold (Fig. 1f). The 2-point conductance and point conductance G_{xx} were compared, and it was found that the top-gate modulater the Schocky barrier contact resistance by two-fold and the field (ffer mobility $\mu_{FF} = \sigma \sqrt{\partial} (\mathcal{N}_{BG})$ by two fold (Fig. 1g). A peak room observed at hole density $p_{BG} = 7 \times 10^{11} / \text{cm}^2$. We temperatur mobility f >600cm² Vs speculate that the top gate modula s screening from a hole accumulation layer. The engineering of charge carrier distribution, and screening, by externally applied potentials within thin bP layers is a new means to tune bP quantum well device properties.

🐯 McGill

New Developments in Bp: Dephasing

<u>Recent work on weak Localization in bP</u> (Purdue)

IOP Publishing	2D Mater. 3 (2016) 024003 doi:10.1088/2053-1583/3/2/024003		
	2D Materials		
CrossMark	PAPER		
	Weak localization in few-layer black phosphorus		
RECEIVED			
REVISED	Yuchen Du, Adam T Neal, Hong Zhou and Peide D Ye		
7 January 2016	School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA		
ACCEPTED FOR PUBLICATION 27 January 2016	E-mail: yep@purdue.edu		
PUBLISHED 30 March 2016	Keywords: black phosphorus, weak localization, phase coherence length, Hall mobility		

Weak Localization in bP (McGill/Pisa)

Weak Localization in bP (McGill-Pisa)

Hikami-Larkin-Nagaoka (HLN) Theory

WL correction to conductivity in 2D:

$$\Delta \sigma = -\frac{e^2}{2\pi^2 \hbar} \left(\Psi \left(\frac{1}{2} + \frac{B_1}{B} \right) - \Psi \left(\frac{1}{2} + \frac{B_2}{B} \right) + \frac{1}{2} \Psi \left(\frac{1}{2} + \frac{B_3}{B} \right) - \frac{1}{2} \Psi \left(\frac{1}{2} + \frac{B_2}{B} \right) \right),$$

with field parameters given by:

$$B_1 = B_0 + B_{so} + B_s$$
$$B_2 = \frac{4}{3}B_{so} + \frac{2}{3}B_s + B_\phi$$
$$B_3 = 2B_s + B_\phi$$

where B_0 describes the elastic and $B\phi$ the inelastic (dephasing) scattering.

HLN Lengthscale and Timescales

Scattering length L_i associated with a field B_i :

$$B_i L_i^2 = \hbar/4e$$

and correspondingly the *dephasing* time τ_n is:

$$L^2_\phi = D\tau_\phi$$

where D is the elastic coefficient diffusion.

HLN Fits (at 0.26K)

🐯 Мссяні

HLN Fits (at 10K)

Temperature Dependence of Dephasing Length

<u>L</u> ϕ

Dephasing in 2D

Electron-electron scattering in the presence of elastic scattering in

Temperature Dependence of Dephasing Length

So, to conclude

Some Thoughts

A "Puckered" Graphene experiment.

Dephasing length/time more "robust" than

what is expected in 2D.

Anisotropy? "1D-like chain"?

どうもありがとうございます

Doumo arigatou gozaimasu

Temperature Dependence of Dephasing Length

Temperature Dependence of Dephasing Length

10

1

T(K)

10

Gervais Lab

Figure 2. Magneto-conductivity measurements of weak localization (a) At constant back gate bias of -30 V for various temperatures from the base temperature of 350 mK up to 40 K. (b) At base temperature of 350 mK for back gate voltages of 0 V, -10 V, -20 V, and -30 V. The solid lines are fitting curves from HLN model within -500 mT and 500 mT.

Zero-field Transport

C

47±1 nm

90±2 layers

Landau Level Fan Diagram Analysis

Berry phase: $\Phi_B = 0$

holes = Schrödinger fermions

V. Tayari,G. Gervais, R. Martel, T. Szkopek Nature Communications (2018 Cervais Lab

bP FET Fabrication : a Much Better Approach

Prof. Yuanbo Zhang

Prof. Yuanbo Zhang best mobility: ~6000 cm²/V.s

More Temperature Dependence of SdH

Prof. Yuanbo Zhang

Nature Nanotechnology (2015)

Atomic Force Microscopy

6±1 nm	12.5±1 nm	47±1 nm
11±2 layers	24±2 layers	90±2 layers

AFM performed after electrical transport measurements

2D Character from Angle-Resolved Data

Nature Nanotechnology (2015)

Fermi Surface and Carrier Density

2D (Fermi disc) model:

$$\frac{CV_G}{e} = n_{2D} = 2 \cdot B_F \cdot \frac{e}{h}$$

Schrödinger-Poisson Simulation

Self-consistent Schrödinger-Poisson simulation:

- 2D hole accumulation layer
- rms width 2.7nm \approx 5 6 layers
- $E_1 E_2 = 28$ meV sub-band confinement energy

V. Tayari,G. Gervais, R. Martel, T. Szkopek Nature Communications (2018 McGill Gervais Lab