

STM studies of exfoliated black Phosphorus

<u>Abhishek Kumar</u>¹, F. Telesio¹, A. Al Temimy², S. Forti², C. Coletti², M. Serrano-Ruiz³, M. Caporali³,

M. Peruzzini³, F. Beltram^{1,2}, S. Heun¹

¹NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, 56127 Pisa, Italy

²Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy

³CNR-ICCOM, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

Introduction

Black Phosphorous

- Puckered Layered material of elemental phosphorous \rightarrow
- \rightarrow Most stable allotrope of the phosphorus
- \rightarrow First successfully obtained from white P. (1.2 GPa & 200°C) by Brigdman in 1914

A-B = 2.224 A °

B-C = 2.244 A °

Phosphorene

- Single Layer of Black P \rightarrow
- Honeycomb network similar to Graphene. \rightarrow
- Exfoliated in 2014 \rightarrow
- \rightarrow Armchair along X and Zig-Zag along Y

Cleaved bP in air - (010) surface

S. L. Yau et. al. Chem, Phys, Lett, 1992, Vol-198, no.-3,4; page-383

Cleaved bP in air - (010) surface

S. L. Yau et. al. Chem, Phys, Lett, 1992, Vol-198, no.-3,4; page-383

- Cleaved bP in dry N2 measured at 77K and 4.3K
 - Band gap of 0.4 eV
 - Peak at -0.17 V due to a surface state C. D. Zhang et. al. J. Phys. Chem. C 2009, 113, 18823

-0.4 -0.2 0.0 0.2 0.4 Sample Voltage (V)

Cleaved bP in air - (010) surface

S. L. Yau et. al. Chem, Phys, Lett, 1992, Vol-198, no.-3,4; page-383

Cleaved bP in air - (010) surface

S. L. Yau et. al. Chem, Phys, Lett, 1992, Vol-198, no.-3,4; page-383

- Cleaved bP in dry N2 measured at 77K and 4.3K
 - Band gap of 0.4 eV
 - Peak at -0.17 V due to a surface state C. D. Zhang et. al. J. Phys. Chem. C 2009, 113, 18823

-0.4 -0.2 0.0 0.2 0.4 Sample Voltage (V)

> BP single crystal cleaved at RT in UHV – measured at 80K

ogy

Cleaved bP in air - (010) surface

S. L. Yau et. al. Chem, Phys, Lett, 1992, Vol-198, no.-3,4; page-383

- Cleaved bP in dry N2 measured at 77K and 4.3K
 - Band gap of 0.4 eV
 - Peak at -0.17 V due to a surface state C. D. Zhang et. al. J. Phys. Chem. C 2009, 113, 18823

Single Vacancies in BP – measured at 4.6K

BP single crystal cleaved at RT in UHV – measured at 80K

B. Kiraly et. al. arXiv:1702.06753, 22 Feb 2017. а () 0.12 0.08 21 10.04 10 15 Position (nm) h = 0.069 nmh = 0.102 nm

Sample Preparation

- Monolayer epitaxial graphene on silicon carbide is used as the substrate
- bP exfoliation on the substrate and sample transfer to the STM is done inside a glove bag, with N₂ flowing through it – which provides inert atmosphere resulting in high sample quality

Annealing Experiments

- Sample annealed for 2 hours at temperatures in 50°C succession
- 300°C- 350°C nice temperature for cleaning the surface – atomic resolution images
- 375°C-400°C formation of craters due to increased desorption of the Phosphorus atoms
- beyond 400°C a sudden increase in the surface roughness
- 550°C most of the flakes desorbed

Atomic Resolution

Measured parameters are in agreement to the reported and predicted values **TABLE 1:** Measured Surface Lattice Constants andTheoretical Optimized Results Together with Previous Dataof Bulk BP

reported by Morita ⁷	measured from STM images	theoretical optimized results
a = 3.313 Å b = 10.473 Å c = 4.374 Å $d_1 = 2.222 \text{ Å}, \alpha_1 = 96.5^{\circ}$ $d_2 = 2.777 \text{ Å}, \alpha_2 = 101.9^{\circ}$	a = 3.33 Å c = 4.33 Å	a = 3.28 Å b = 10.37 Å c = 4.35 Å

Morita, A et. al. Appl. Phys. A: Mater. Sci. Proc. 1986, 39, 227.

nterprise for nano**S**cience and nano**T**echnology

Atomic Resolution

— Profile 1

0.4

e and nanoTechnology

0.5

0.6

bP desorption with annealing

Xiaolong Liu et. al., J. Phys. Chem. Lett. 2015, 6, 773.

TEM image of eye shaped crack opening on heating bP flake at 400°C for 5, 8 and 12 min.

- decomposition of 2D BP is observed to occur at ~400 °C in vacuum, in contrast to the 550 °C bulk BP sublimation temperature
- This decomposition initiates via eyeshaped cracks along the [001] direction

bP desorption with annealing

Xiaolong Liu et. al., J. Phys. Chem. Lett. 2015, 6, 773.

TEM image of eye shaped crack opening on heating bP flake at 400°C for 5, 8 and 12 min.

- decomposition of 2D BP is observed to occur at ~400 °C in vacuum, in contrast to the 550 °C bulk BP sublimation temperature
- This decomposition initiates via eyeshaped cracks along the [001] direction

M. F. Deschenes et. al., J. Phys. Chem. Lett. 2016, 7, 1667.

Bright-field LEEM snapshots of hole expansion during sublimation of exfoliated bP. Two seconds between each image from (a) to (h) recorded respectively at the following temperatures: 486 °C, 488 °C, 490 °C, 491 °C, 493 °C, 495 °C, 497 °C, and 499 °C.

- Sublimation manifests itself above 375 ± 20 °C
- Faceted holes with the long axis aligned along the [100] direction, in contrast to what was reported earlier

Measured Unit cell parameters A=0.367 nm, C=0.598 nm

Measured Unit cell parameters A=0.367 nm, C=0.598 nm

– Profile 1

30

20

– Profile 1

30

20

x [nm]

C [001]

Measured Unit cell parameters A=0.367 nm, C=0.598 nm

First STM on exfoliated bP flakes

- First STM on exfoliated bP flakes
- Glove bag facilitates getting high quality samples

- First STM on exfoliated bP flakes
- Glove bag facilitates getting high quality samples
- Surface evolution with temperature

- First STM on exfoliated bP flakes
- Glove bag facilitates getting high quality samples
- Surface evolution with temperature
- Crater alignment to crystal lattice

Acknowledgement

SCUOLA Normale Superiore

European Research Council Established by the European Commission

Supporting top researchers from anywhere in the world

SEED Project

PhosFun Project

Thank you for your attention