
Edge channel transport in graphene nanoribbons

Lennart Bours

September 6, 2016



Contents

Introduction iii
0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
0.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Theory 1
1.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Graphene lattice and band structure . . . . . . . . . . . . . . 2
Nanoribbons . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Quantum Hall physics . . . . . . . . . . . . . . . . . . . . . . 4
The anomalous quantum Hall effect . . . . . . . . . . . . . . 6
Edge reconstruction . . . . . . . . . . . . . . . . . . . . . . . 8
Confining potential . . . . . . . . . . . . . . . . . . . . . . . . 9
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Introduction

This master thesis represents my work at the nest laboratory of Scuola
Normale Supriore in Pisa. Here I worked on the fabrication of graphene
nanoribbon field effect transistors, as well as the characterization of these
devices by several means, most notably Scanning Gate Microscopy (sgm).
sgm aims to unite the best of both worlds: it combines traditional Atomic
Force Microscopy (afm) with the electric field effect, typically achieved
with global gating through the backgate or local but static gating through
splitgates. By applying a voltage on the metallic afm tip one can achieve
not only local gating, but also control this gating with microscopic precision.

Graphene, the famous 2d material, was first exfoliated in 2004 [1] and
quickly gained a tremendous amount of attention. Research activity focused
on graphene exploded, and the number of articles published every year has
grown exponentially up to 2014, see figure 1.

Figure 1: The number articles published in the period from 2004 to 2013
based on a search for ‘graphene’ in keywords, titles and abstracts. Source:
SciVal.

iii
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The enormous amount of interest in graphene can be understood by
its enormous potential. This first two-dimensional crystal showed many
incredible properties and hence offers many new opportunities [2]. From high
mobility electronic transport by massless Dirac fermions and many other
anomalous effects, to record breaking mechanical strength, useful optical
properties and more.

The Graphene Flagship Consortium1 has, hoping to exploit graphene’s
remarkable properties, organized research lines in a wide range of topics.
From fundamental research on graphene, other newly found 2d materials
and composites of those to industrial production, high frequency and flexible
electronics, spintronics, sensors, detectors and energy storage.

Conveniently, one can produce high quality material for research purposes
with simple household scotch-tape.

0.1 Motivation

The Scanning Gate Microscope (sgm) set-up offers a local handle by which
one can manipulate electronic transport. This opens up many interesting
possibilities that are not granted in other experimental set-ups. On can,
for example, study transport on a microscopic scale inside devices. With
access to reasonably strong magnetic fields, one can study and manipulate
transport in the quantum Hall regime. Using the sgm, one can determine the
edge channel structure and determine if edge channel reconstruction takes
place. This kind of work has been done on semiconductor 2degs [3, 4, 5],
but not yet on graphene.

Graphene is alluring due to its inherent 2d nature, its relativistic proper-
ties and anomalous physics. Particularly interesting is the (inner) structure
of the edge channels in the quantum Hall effect.

The chiral and robust nature of the quantum Hall effect offers and ideal
laboratory for quantum transport experiments in one dimension. Notably,
edge states of topologically ordered 2deg systems are expected to display the
so called ‘edge-bulk’ correspondence, which plays a pivotal role in quantum
Hall based quantum computing [6, 7, 8]. Although the aim of qh based
quantum computing is to exploit non-Abelian statistics of certain fractional
Hall state quasi particles, it appears to be exceedingly difficult to realise
these states in experiment [9, 10].

The occurrence of electronic reconstruction forms the most likely obstacle,
since it destroys the ‘topologically protected’ state and hence the required
edge-bulk correspondence. In short, a system that shows no electrostatic
reconstruction is required. Since graphene naturally provides a 2deg with

1A gigantic European project which started in 2013 and now well under way. Focused
on graphene and its many aspects, its brings to the table a budget of one billion Euro.
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an atomically sharp confining potential, it is a interesting candidate for this
kind of physics.

Note that, although investigating the fractional quantum Hall effect was
not attempted for this thesis, the structure of the integer Hall effect edge
channels should reveal whether or not reconstruction takes place.

Throughout this thesis the term ‘graphene nanoribbons’ will be routinely
used when describing or referring to our devices, because the experiment
requires a thin and long device which thus resembles a ribbon. Note however,
that the ribbons discussed in this thesis are typically around 800 nm wide and
several µm long and are thus significantly larger then the (extremely) narrow
ribbons which are expected to show for example, transversal quantization
and a band gap. The ribbon shape is chosen because it is suitable for the
sgm experiment, and should not modify transport in any way.

0.2 Thesis structure

This thesis consists of five chapters. Firstly a brief overview of graphene’s
deviant (and relevant) properties is given, together with a more in depth
review of the quantum Hall physics which form the theoretical basis of this
project. In the second chapter device fabrication is discussed. The following
chapter, entitled Characterization, contains information about the properties
and quality of several devices and magneto-transport measurements are
presented. The fourth chapter presents the details and results of the sgm
experiments and forms the core of this thesis. In the fifth and final chapter
a conclusion of this work is given.



Chapter 1

Theory

The aim of the first section of this chapter is to briefly review some of the
basic properties of graphene and effects that are relevant for understanding
and characterizing graphene’s behaviour. Unless otherwise specified the
reader is referred to the review articles [11] and [12] for more information
about specific topics. The theory of quantum Hall physics in graphene,
which is central to this thesis, will be discussed in a separate section. The
last section features the relevant Landauer-Büttiker calculations, which are
crucial for understanding the results presented later.

1.1 Graphene

Graphene is an allotrope of carbon that appears as one single layer of carbon
atoms arranged in a hexagonal or ‘honeycomb’ lattice. This two dimensional
crystal has been studied since 1947 [13] because of its relation to graphite,
carbon nanotubes, fullerenes, the interesting properties of this family and
its theoretical accessibility. For a long time this was considered a purely
hypothetical exercise, as the Mermin-Wagner theorem predicts that (free
standing) 2d crystals are unstable at any finite temperature, due to the
logarithmic divergence in the out of plane acoustic phonons as ~q → 0 [14].

Nevertheless, Geim and Novoselov succeeded in isolating graphene in
2004 [1] and hereby opened up a field that would expand rapidly. Graphene
immediately attracted much attention due to its perplexing mechanical and
electronic properties. In 2010 Geim and Novosolov where awarded the Nobel
prize in physics

“for ground breaking experiments regarding the two-dimensional
material graphene.”

1
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Graphene lattice and band structure

In graphene the carbon atoms are bound to each other by the sp2 hy-
bridization of the atomic orbitals s, px and py. The distance separating two
neighbouring lattice sites is a = |δ| = 1.42 Å (figure 1.1a). The hexagonal
lattice can be constructed from two triangular Bravais lattices and thus has
two carbon atoms per unit cell, generally referred to as sites a and b. As
a consequence of this, the two carbon atoms at lattice sites a and b are
distinct. The existence of these sublattices, combined with the symmetry
properties of the crystal leads to some special properties, such as the valley
degeneracy and the linear energy spectrum.

Graphene’s basic lattice vectors ~a and reciprocal lattice vectors ~b are:

~a1 =
a

2
(3,
√

3) ~b1 =
2π

3a
(1,
√

3) (1.1)

~a2 =
a

2
(3,−

√
3) ~b2 =

2π

3a
(1,−

√
3) (1.2)

(a)
(b)

Figure 1.1: a) Graphene’s hexagonal lattice with sublattices a and b and
the Dirac points K and K ′ in the momentum space. b) The band structure
of graphene calculated with the nearest neighbour approximation.

The reciprocal space of graphene is again hexagonal in shape, like the
lattice itself. There are two special points in k-space, known as K and K ′.
These two ‘Dirac points’ (K and K ′) are especially important for electronic
transport in graphene. In undoped graphene, the Fermi energy crosses
the bands at these points, and for small deviations from this energy, the
dispersion relation is linear (see figure 1.1b). In combination with the valley
degeneracy, this gives rise to graphene’s ‘relativistic’ transport properties.
The position of the Dirac points is given by:

~K = (
2π

3a
,

2π

3
√

3a
) ~K ′ = (

2π

3a
,− 2π

3
√

3a
) (1.3)

Graphene’s band structure can be calculated using the tight binding
approximation, in which a Hamiltonian is constructed using the electrons’



CHAPTER 1. THEORY 3

hopping energies to nearby atoms. Solving this Hamiltonian for both nearest
neighbour and next nearest neighbour hopping one finds the dispersion
relation:

E±(~k) = ±t
√

3 + f(~k)− t′f(~k) (1.4)

with

f(~k) = 2 cos(
√

3kya) + 4 cos(

√
3

2
kya) cos(

3

2
kxa) (1.5)

The plus and minus signs denote the conduction and the valance band,
respectively. The nearest neighbour and next nearest neighbour electron
hopping energies are respectively t ≈ 2.8 eV, and t′ is estimated between
0.02 · t and 0.2 · t. The conduction band and valance band touch at the K
and K ′ points, in undoped graphene the Fermi energy crosses the energy
bands here.

The next nearest neighbour hopping parameter t′ breaks the symmetry
between the conductance and valance band. Like other higher order pertur-
bations that warp or shift graphene’s band structure, the effects of t′ can be
neglected for energies close to 0, where the dispersion relation (equation (1.4))
is approximated to be linear by expanding it close to the Dirac points. With
~k = ~K + ~q and |~q| � | ~K| the band structure takes the ‘relativistic’ form:

E±(~q) ≈ ±vF |~q| (1.6)

where vF = 3ta
2 ≈ 106 m/s.

Thus, for low energies, the charge carrier energy is proportional to its
momentum and the Fermi velocity vF , which is constant and roughly 300
times smaller than c. A picture of the band structure close to the Fermi
energy is shown in figure 1.1b on the preceding page, with a close up of the
linear dispersion relation close to the Dirac points.

Nanoribbons

After the isolation of graphene became routine, an interest into graphene
nanoribbons quickly developed. These promise control over the electronic
properties of the graphene —most notably the band gap— if one succeeds
in fabricating ribbons so narrow that lateral confinement of the electrons
becomes important. In order to engineer the band gap, an enormous control
is required. In theory the state of the ribbon can change between conducting
and insulating by adding a single row of carbon atoms to the ribbons width.
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Furthermore, the ribbon’s edge structure, so called ‘zig-zag’ or ‘armchair’,
also affects transport and can lead to special ‘edge states’1.

Several groups have attempted to open a band gap using lateral confine-
ment. As early as 2007 a suppression of the minimal conductance at low
charge carrier densities was reported for ribbons with a width smaller than
100 nm [15]. A later work reported that this suppression in narrow ribbons
with a width of 60 nm was not due to lateral confinement but rather due to
charge related effects which created quantum dots in the narrow devices [16].

The width of the nanoribbons fabricated for this thesis ranged from
200 nm to 800 nm, with ribbons of the latter dimension used for sgm ex-
periments. The devices are therefore much larger than the widths which
are typically required to see a suppression of the minimum conductance in
experiments.

1.2 Quantum Hall physics

In 1980 von Klitzing discovered that the quantum Hall effect was precisely
quantized, a feat for which he was awarded the Nobel prize in physics a
mere 5 years later. A theoretical explanation for the the quantized Hall
conductivity was first given by Laughlin [17], who used a gauge invariance
argument to derive the exact result. Halperin later extended this work by
describing the particular ‘extended (edge) states’ and showed how a moderate
amount of disorder does not disturb the exact quantization of conductance.

When confined into two dimensions and subjected to an external magnetic
field perpendicular to this plane, electrons follow closed circular paths known
as cyclotron orbits. The electron states condense into a spectrum of Landau
levels which are equidistant in energy and macroscopically degenerate. Using
the electron charge e, the magnetic field B and cyclotron mass m, we can
derive the cyclotron frequency

ωc = eB/m (1.7)

which is convenient for expressing the electron energy spectrum in two-
dimensional systems:

En = ~ωc(n+
1

2
) (1.8)

In the 2d case, the degeneracy of these levels is likewise dependent on
the external magnetic field:

N =
BA

φ0
(1.9)

1Note that these edge states are a consequence of the edge geometry and appear in zero
magnetic field. They are wholly unrelated to the quantum Hall effect and throughout this
thesis ‘edge states’ is generally used to refer to the quantum Hall variety.
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Figure 1.2: a) In a magnetic
field, time reversal symmetry
is broken and hence, backscat-
tering is suppressed. b) Lan-
dau levels in the classical quan-
tum Hall effect. The horizon-
tal axis represent the width of
the 2d system. The thick line
represents the confining poten-
tial which bends the levels up-
wards close to the edges, where
they will inevitability cross the
Fermi level.

with sample area A and the flux quantum φ0 = h/2e. Note that the Landau
levels can be further degenerate due to spin (assuming the Zeeman splitting
negligible) or valley degeneracy.

The quantization of the cyclotron orbit and subsequent formation of
Landau levels leads to macroscopically accessible quantum effects such as
the Shubnikov-de Haas oscillations and the de Haas-van Alphen effect, which
are oscillations in the longitudinal conductivity and magnetic moment, re-
spectively.

If the splitting between the Landau levels ∆E = ~ωc becomes larger than
the broadening of the levels, gaps appear in the density of states. When the
Fermi energy lies in between two well separated levels, electrons located in
the bulk of the system become localized, while electron states at the edge
are de-localized (often portrayed semi-classically as ‘skipping orbits’).

The number of edge channels is given by the number of Landau levels
with an energy lower than EF , i.e. the filling factor ν. The energy of these
levels is lower than the Fermi energy in the bulk of the system, but the levels
are pushed upwards by a confining potential that defines the edges of the
2deg (figure 1.2). The position where the Landau levels cross the Fermi
energy denotes the position of the edge channel. If the Landau levels are spin
degenerate (ignoring the Zeeman splitting), the sequence of filling factors in
the integer quantum Hall effect is

ν = gsgvn (1.10)

with n the number of filled Landau levels, gs the spin degeneracy and gv
valley degeneracy.

The edge channels are chiral, and electrons on opposite sides of the system
move in opposite directions. If the sample edges are spatially well separated
and the disorder is not too large, scattering from one edge to the other is
impossible and hence backscattering is strongly suppressed [18]. The edge
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channels along one side of the sample are necessarily in equilibrium and the
longitudinal resistance Rxx drops to zero.

If electrons are injected into the edge channels on one side of the sample
and collected on the other, a non-zero Hall voltage can be measured, due
to the difference in the chemical potential between the two opposing edges.
The corresponding Hall resistance Rxy = h/(νe2) is quantized and appears
as a plateau when the Fermi energy is between two well separated Landau
levels. The resistance of this plateau depends on number of edge channels
through which transport can occur, also known as the filling factor ν. When
the Fermi energy crosses a Landau level, the Hall resistance smoothly and
monotonically increases to the next plateau.

Figure 1.3: The quantum Hall effect as seen in device G2, while sweeping
the backgate in a magnetic field of 8 T at 4.2 K. The filling factors ±2,±6
and ±10 are well defined and clearly visible.

The anomalous quantum Hall effect

Figure 1.3 shows the anomalous quantum Hall effect as seen in our devices.
Note that, for clarity, the Hall resistance and filling factors will be assigned
a negative value on the hole side throughout this thesis.

The quantum Hall effect and other relevant physics have to be slightly
modified when applied to graphene, due to its particular band structure
and symmetry. The cyclotron mass, for example, is now dependent on the
electron density, as a direct consequence of the massless Dirac-like dispersion.

m∗ =

√
π

vF

√
n (1.11)

The cyclotron frequency can be expressed using the magnetic length
lB =

√
c/eB which leads to the modified expression:

ωc =
√

2
vF
lB

(1.12)

and hence the cyclotron energy scales with
√
B as opposed to scaling with

B in classical Hall physics (equation (1.7) on page 4). This discrepancy in



CHAPTER 1. THEORY 7

scaling leads to energy spectra which are rather different than the ones found
in ordinary 2degs. For example, at fields B ≈ 10 T the 2deg cyclotron energy
is of the order of 10 K, whereas the Direac fermion cyclotron energy is around
1000 K. The large cyclotron energy means that the quantum Hall effect
in graphene can be observed even at room temperature [19]. Furthermore,
at B = 10 T the Zeeman energy gµBB ≈ 5 K is small compared to the
cyclotron energy, and can be neglected in graphene.

The most important consequence of the unique nature of charge carriers
in graphene is that the Landau levels are no longer spaced equidistantly, but
follow a square root dependency:

E = ±
√

2eB~v2F
c

(n+
1

2
± 1

2
) (1.13)

or

E±(n) = ±~ωc
√
n (1.14)

where n = 0, 1, 2. . . is a positive integer. Note that the Landau level
degeneracy in the 2d bulk is identical to the one from the general case
equation (1.9) on page 4.

The Landau levels at the two Dirac points K and K ′ have the exact same
energy spectrum and hence every level is fourfold degenerate (two times for
spin and two times for valley). The important exception is the anomalous
zero energy Landau level, which is shared by electrons and holes and only
contributes 2 modes to transport in either the hole or the electron regime,
instead of the 4 modes contributed by all other levels. This gives the modified
sequence of filling factors

ν = ±gsgv
(
n+

1

2

)
(1.15)

with n = 0, 1, 2 . . ., gs = 2 the spin degeneracy and gv = 2 the valley degen-
eracy in graphene. Due to the extra 1

2 term compared with equation (1.10)
on page 5, the anomalous quantum Hall effect in graphene is also called the
half-integer quantum Hall effect.

The appearance of the zero energy Landau level is due to the absence
of the normal +1/2 term in equation (1.14). When solving the system’s
relativistic Hamiltonian it vanishes because of the exact cancellation of the
cyclotron energy and a pseudo Zeeman term2 (the second and last terms in
equation (1.13), respectively) which represents the electrons ‘orbital motion’;
the hopping process between neighbouring lattice sites.

The special nature of the zero energy level is a consequence of the Atiya-
Singer index theorem, which tells us that this energy level is topologically

2A similar situation occurs in free electrons, where the cyclotron mass is equal to the
effective mass and both terms also cancel each other out. In semiconductors the cyclotron
mass is usually much smaller and the Zeeman term becomes a small correction.
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Figure 1.4: a) A top view of the 2deg
system with the arrows illustrating
electron flow. b) The confining po-
tential adiabatically bends the Landau
levels upwards close to the edge. Full
dots denote filled states, empty dots
denote empty states. c) The corre-
sponding electron density as a func-
tion of the distance from the sample
edge. d) After reconstruction: the
shaded regions are compressible strips
with a non-integer filling factor, the
unshaded strips have integer filling fac-
tors and are incompressible. e) The
electrostatic potential and Landau lev-
els. Half filled dots indicate partially
occupied levels. f) The electron den-
sity as a function of the distance from
the edge. From [21].

protected against inhomogeneities in the magnetic field, since it is only
dependent on the total flux. This is particularly relevant since the level is
robust with respect to the inhomogeneitis created by ripples and is protected
against broadening which can be discerned experimentally [20].

In summary, the quantum Hall effect in graphene differs from the normal
quantum Hall effect, most importantly in the square root dependence of the
Landau levels on the charge density and the absence of a constant energy
term 1

2~ωc. Every level is fourfold degenerate, except for the zero energy level
which is divided between electrons and holes and therefore only contributes
2 modes to transport. Furthermore, the zero energy level is topologically
protected against broadening due to an inhomogeneous magnetic field.

Edge reconstruction

The naive picture drawn by Halperin leads to discrete jumps in the electron
density when the Landau levels cross the Fermi energy, see figure 1.4. This in
turn would lead to large electrostatic forces and seems an unrealistic picture.

This issue was addressed by proposing a many body ‘electrostatic re-
construction’ of the edge states which relaxes the electrostatic potential
[21, 22]. If the confining potential is smooth (parabolic), then the electrons
can gain energy by locally redistributing themselves and thus screening out
the discrete jumps in charge. Subsequently every edge channel splits into a
compressible and an incompressible strip. The width of these strips depends
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on the filling factor and the steepness of the confining potential. Furthermore,
they scale with the width of the 2deg. A smooth confinement potential
is typical for semiconductor 2deg systems where the boundaries often are
created by electrostatic potentials supplied by gates. And even if a sharp
edge is created through etching, surface band banding due to Fermi level
pinning at the edge of the sample still tends to smoothen out the confining
potential.

The electron wave function overlap of electrons belonging to different edge
states is exponentially small, such that the different edge states are effectively
isolated in the absence of disorder, although in experiment the minimum
length required before parallel channels equilibrate is usually comparable or
smaller than the sample size; of the order of microns [23]. Depending on the
filling factor, there can be either a compressible or an incompressible state in
the centre of the system. These configurations are referred to as the ‘c-state’
and ‘i-state’ respectively.

Confining potential

The electrostatic reconstruction hinges on the assumption that the confining
potential is sufficiently smooth, such that it allows the redistribution of
the electrons. It has been suggested that if the edge potential is very
sharp, reconstruction cannot take place [24] and edge-bulk correspondence
is maintained (see section 0.1 on page iv). In this regard, graphene seems
a promising system as its confining potential is sharp on an atomic length
scale.

However, there is a second important argument that considers screening
of the gate potential. Typical devices are fabricated on Si/SiO2 wafers,
where the highly doped, metallic Si is used as a backgate and a 300 nm thick
SiO2 top layer insulates the device from the backgate. By applying a voltage
to the back gate, a considerable amount of charge is induced in the graphene.
The electric field generated by these charges induces image charges 0.3 µm
below the Si surface, which screen out this electric field at the Si surface.

The large distance3 (0.6 µm) between these image charges and the device
tends to induce a macroscopic charge accumulation along the boundaries of
thin, µm sized graphene strips [25].

This charge accumulation along the edges of the graphene leads to a
smoothing of the confining potential, as depicted in figure 1.5 on the following
page; the potential is zero inside the sample —if the dimensions of the sample
are larger than the distance between the sample and the backgate— but
tends to non-zero values at the boundary of the device. If the potential

3In the quantum Hall regime the distance between the backgate and the device should
be compared to the magnetic length lB ≈ 26 nm/

√
B where B is the magnetic field in

Tesla.
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becomes sufficiently smooth, electronic reconstruction of the edge channels
becomes possible again.

Figure 1.5: The screening of an electric potential φ at the surface of a 300 nm
thick insulator with ε = 3.9 (SiO2). The screened potential is shown by the
solid line, the upper dashed line shows the potential of the surface charge
without image charges in the backgate (induced by the charge of the device).
The lower dashed line represents the difference between the two. The in-plane
distance r =

√
x2 + y2 in measured in units of the insulating layer thickness,

b = 0.3 µm. From [25].

1.3 Landauer-Büttiker calculations

This section features an overview of the relevant Landauer-Büttiker cal-
culations [18] which will be needed to understand the sgm results later
presented.

Quantum Hall transport

We describe transport at the microscopic level by attributing a current
to all available electron states that contribute to transport. The series of
delocalized states, that form a continues path, are known as channels. The
edge states in the quantum Hall system can carry a current along the edges
since the electron velocity v ∝ dE/dk, which is non-zero only close to sample
edge, where the Landau levels are bended upwards. Transport through a
small number of (edge) channels can be conveniently described with the
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Landauer-Büttiker formalism. If no backscattering takes place, every channel
contributes exactly one unit of conductance

σ0 =
e2

h
(1.16)

If scattering is possible, this value can become smaller. To determine the
total conductance, one can simply sum all the contributions, taking into
account the possibility of backscattering. Given a certain conductance, a
current will flow if there is an imbalance in the chemical potential µ, which
represents the energy of the electrons. By applying a voltage bias to one
side of a device, we inject electrons with a chemical potential µ1 > 0 into the
device, through a contact which is called the source contact. On the other
side of the the device, a contact is grounded an thus has a chemical potential
which we will define µ2 ≡ 0. Given the total conductance and a difference in
the chemical potential ∆µ = µ1 − µ2, a current will flow

I =
e

h

i,j=N∑
i,j=1

Tij∆µ (1.17)

where Tij = |tij |2 is the transmission probability from channel i to channel j
and we have assumed that the energy dependence of Tij can be neglected in
the (small) energy range between µ1 and µ2. The sum is to be taken over all
channels to calculate the total transmitted current.

Using the voltage drop eV = ∆µ we can find the Landauer resistance

R =
h

e2
1

T
(1.18)

In the ideal case that all channels are transmitted perfectly (no scattering),
the transmission probability becomes 1: T =

∑i.j=N
i,j=1 Tij = 1 and thus the

resistance becomes

R =
h

e2
1

N
(1.19)

with N the number of channels.
We will now apply this formalism to the quantum Hall edge channels

(section 1.2 on page 4). If we are in a region where the filling factor is an
integer, Rxx drops to zero (backscattering is suppressed), while we see a
plateau in Rxy. Since it is impossible to backscatter, the channels on one
side of the sample must be at the same chemical potential. The contacts
on the top of the sample are thus at the chemical potential of the source
contact µs and the samples on the bottom are at a potential µd = 0.

Due to the special nature of the zero energy Landau level in graphene
(see section 1.2 on page 6), the first Landau level is two times degenerate,
while all others are four times degenerate (two times for spin and two times
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for valley degeneracy). The sequence of the number of channels contributing
to transport is thus N = 2, 6, 10 . . . (also known as the filling factor ν).

If the filling factor, and thus the number of edge channels, is known, it is
straightforward to calculate the Hall resistance with equation (1.19) on the
previous page, since

h

e2
≈ 25.8 kΩ (1.20)

thus

Rxy ≈ 12.9 kΩ for ν = 2 (1.21)

and

Rxy ≈ 4.3 kΩ for ν = 6 (1.22)

etc.

Thus, when the filling factor is integer, one will measure a longitudinal
resistance Rxx = 0 and Rxy ≈ 25.8/ν kΩ. See for example figure 1.6.

Figure 1.6: A schematic illustration of the quantum Hall effect in a Hall bar.
The flow of electrons is denoted by the arrows. The outermost channel is
twofold degenerate, while every other channel is fourfold degenerate, thus two
filled Landau levels correspond to ν = 6 edge channels, which corresponds to
a Hall resistance of ≈ 4.3 kΩ.

nn’ junctions

We assume ideal contacts which perfectly transmit all edge channels. The
contact on the left is the current source and is at a chemical potential µs.
The opposing contact on the right is the drain which we choose to be at
µd = 0. The other contacts are enumerated clockwise, in the top left is
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Figure 1.7: A schematic illustration of the quantum Hall effect in a Hall
bar. A potential difference between the right and left side of the device is
applied such that the right side of the device has a lower filling factor. It is
thus inaccessible for the inner channels, whose Landau level has the highest
energy. The channels are forced to backscatter from the top to the bottom of
the device. In the bottom part of the figure, the position of the Fermi energy
is shown with respect to the Landau levels for both regions. At the junction
between the two regions there must be a non-integer filling factor between
ν = 6 and ν = 2, where the second Landau level crosses the Fermi energy. In
this region the bulk is conductive and hence current can flow (backscatter)
from the top to the bottom edge of the device.
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contact 1 and the bottom left is contact 4. In all examples presented in
this chapter the current will flow through the sample in a clockwise manner,
which corresponds to a magnetic field pointing upwards. If one would either
change the charge carrier polarity or reverse the direction of the magnetic
field, this flow would reverse, but the results stay the same.

We now discus a situation wherein the region on the left side of the
sample (containing the contacts: source, 1 and 4) is at filling factor ν = 6,
while the right half, containing the other three contacts, is at filling factor
ν = 2, see figure 1.7 on the previous page. In this case the four channels
corresponding to the second Landau level are backscattered before they reach
the right side of the device.

To calculate the transmitted current we have to solve a set of equations
(we already simplified by setting µd = 0). Furthermore, we assume that
the side probes do not transmit any current. This gives us the conditions
I1,2,3,4, = 0 and we chose Is = −Id. The number of channels on the right
and left hand side is denoted by νr and νl respectively and νl > νr, then

h

e
I = νlµs − (νl − νr)µ1 (1.23)

0 = νlµ1 − νlµs (1.24)

0 = νrµ2 − νrµ1 (1.25)

0 = νrµ3 − 0 (1.26)

0 = νlµ4 − (νl − νr)µ1 (1.27)

νl − νr is the number of backscattered channels. It is straightforward to
solve these equations

µ1 = µs → I =
e

h
νrµs (1.28)

Thus, the current transmitted depends on the difference in chemical
potential between the source and the drain ∆µ = µs − µd = µs and on
the number of channels that flow from source to drain (in this case νr) at
this chemical potential. The chemical potential of contact 3 is equal to µs,
since the number of transmitted channels is νr and these are at µs. We can
now calculate the measured Hall resistance on the right side of the device,
between contacts 2 and 3, using the current derived in equation (1.28)

R23 =
∆µ

eI
=

h

e2
µ3 − µ2
νrµs

=
h

e2
(1− 0)µs
νrµs

=
h

e2
1

νr
(1.29)

So, the Hall resistance between the two contacts on the right side of
the device will reflect the filling factor in the right side of the device. For
the contacts 1 and 4 on the left side of the device we plug in µ1 = µs and
µ4 = νl−νr

νl
µs
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R14 =
∆µ

eI
=

h

e2

(
νl−νr
νl
− 1
)
µs

νrµs
=

h

e2
1

νl
(1.30)

So also the Hall contacts on the left side will detect the number of
channels flowing in the left side. This result may seem counter intuitive at
first, since the difference between the Hall contacts ∆µ is no longer µs − µd,
as it was when the filling factor was 2 in the whole device. The reason the
measured resistance is unaffected when inducing the region with filling factor
1, is that the current has changed with ∆µ, from I = e2

h νlµs to I = e2

h νrµs,
cancelling out the change of ∆µ.

The source-drain resistance measures the lowest filling factor

Rsd =
∆µ

eI
=

h

e2
µs
νr

(1.31)

although, while measuring the source-drain resistance one would also be
sensitive for the resistance of the contacts themselves, which might be
significant.

Finally, also Rxx is unaffected;

R12 =
∆µ

eI
= 0 (1.32)

since contact 1 and contact 2 are both at the same chemical potential µs,
even though the number of edge channels at these contacts is different. This
holds for every combination of filling factors as long as both have the same
sign, i.e. there is either an nn′ or a pp′ junction.

nn’n junctions

We will now discus nn′n junctions. For example, first a global filling factor 6
is induced. Then, a region with filling factor 2 is induced in the centre of the
device, see figure 1.8 on the next page.

This region does not extend to the contacts. Current is injected into the
edge channels from the source, and flows along the top edge of the device.
At the junction between the regions with filling factor 2 and 6, the bulk is
conducting and the inner edge channels are backscattered from the top to the
bottom of the device. The outer edge channels can flow through the device
uninterrupted. Now νl = νr ≡ ν and the number of channels through the
centre region is denoted ν ′ < ν, which gives us the following set of equations
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Figure 1.8: A schematic illustration of the quantum Hall effect in a Hall bar.
The potential is now localized in the centre of the device, where it creates a
region of filling factor ν = 2, while the rest of the device is at filling factor
ν = 6.

h

e
I = νµs − (ν − ν ′)µ1 (1.33)

0 = νµ1 − νµs (1.34)

0 = νµ2 − ν ′µ1 (1.35)

0 = νµ3 − 0 (1.36)

0 = νµ4 − (ν − ν ′)µ1 (1.37)

This case is very similar to the one nn′ junction, and again the Hall
contacts are only sensitive to the number of channels at these contacts ν.

Rxy =
h

e2
1

ν
(1.38)

The difference is that Rxx is no longer zero

µ1 = µs → I =
e2

h
ν ′µs (1.39)

R12 =
∆µ

eI
=

h

e2

(
1− ν′

ν

)
µs

ν ′µs
=

h

e2

( 1

ν ′
− 1

ν

)
(1.40)

For ν = 6 and ν ′ = 2 this corresponds to:

Rxx =
h

e2

(1

2
− 1

6

)
≈ 8.6 kΩ (1.41)
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and for ν = 10 and ν ′ = 6

Rxx =
h

e2

(1

6
− 1

10

)
≈ 1.7 kΩ (1.42)

etc.

Thus, in the ideal case where the bulk of the sample is completely
insulating (except of course at the nn′ junction where the inner channels are
backscattered) Rxx will be a non-zero value that illustrates the transport
through the edge channels. In the ideal case this value will manifest as a
plateau that imitates the well known plateaus of the Hall resistance Rxy.

It is also insightful to look at the diagonal contact configurations: R+
D =

R13 and R−D = R24. We can calculate the expected resistance by simply
adding or subtracting the resistances we already calculated: R±D = Rxy±Rxx,
thus

R+
D =

h

e2
1

ν ′
(1.43)

and

R−D =
h

e2

(2

ν
− 1

ν ′

)
(1.44)

Thus, one can also determine the minimum filling factor in the central
region by measuring the diagonal resistance R+

D. The same is true for the
source-drain resistance

Rsd =
h

e2
1

ν ′
(1.45)

However, it should again be noted that, when using the source-drain resis-
tance, one will have to subtract the contact resistances somehow.

A measurement of Rxx and Rxy thus provides the same information as
a measurement of R+

D (or R−D, if one doesn’t mind the inconvenience). To
avoid redundancy, measurements of Rxx will be presented and discussed in
this thesis.

Calculations similar to the ones presented above can be made for nn′,
where νn < ν ′n, np and npn junctions. In these cases the Hall resistance
will take on fractional values as a consequence of the edge channels filled
with electrons at the high chemical potential equilibrating with the ‘empty’
channels while flowing through the device [26, 27, 28]. Assuming the channels
can fully equilibrate, this gives rise to fractional resistance values, which are
unrelated to the fractional Hall effect. However, these are omitted here since
they are not relevant for the work presented in this thesis.



Chapter 2

Fabrication

The first section of this chapter details which techniques were used to produce
the devices for this work. In the second section the differences between several
devices are discussed, and the motivation behind specific device designs is
presented.

2.1 Cleanroom techniques

All devices measured were fabricated in the cleanroom of the nest laboratory.
Both exfoliated and graphene grown by Chemical Vapour Deposition (cvd)
was used to fabricate graphene fets.

Exfoliation

For exfoliated graphene, high quality graphite was deposited on a piece
of scotch tape, and subsequently gently rubbed on a ≈ 1.5 × 1.5 cm2 big
Si/SiO2 wafer covered with a layer of polyvinyl alcohol (pva) and a 1 µm
thick layer of poly-methyl methacrylate (pmma).

The pmma resides on top and is —like graphene— strongly hydrophobic
and thus allows for the exfoliation of larger graphene flakes. The size and
shape of the yielded graphene flakes can vary but is usually around several to
several tens of micrometers long and wide. The graphene flakes are located
with an optical microscope by their contrast [29] (figure 2.1a on the following
page) and are then checked with Raman spectroscopy [30]. When a suitable
flake is located, the wafer is placed in a Petri dish, and demi-water is slowly
and carefully added. The water dissolves the pva layer, so that the top
pmma layer (with the graphene on top) is detached from the Si wafer. The
pmma is strongly hydrophobic and thus starts to float on the water. If the
procedure is performed successfully, the pmma will float completely while
the water will never have been in contact with the graphene.

The floating pmma, with the target graphene flake on top, is then ‘fished’

18
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out of the water with a small, square, custom made piece of metal with an
inner hole of ≈ 1 cm in diameter. The pmma is positioned such that the
target flake is located on the pmma spanning the hole. The metal piece
is then placed in a Karl Suss mjb4 mask aligner together with a custom
made heater and a target chip. The chip is a clean piece of highly doped
Si wafer with a 300 nm SiO2 capping layer. It is ≈ 3 × 3 mm2 big and
already has large conductive pads and a coordinate grid on top, created with
uv-lithography and subsequent evaporation. These large chromium/gold
pads will later be used to connect the electric wiring.

The target chip, which is placed on top of the heater, can be seen through
the hole in the metal piece, since the pmma is transparent. Thus, this
configuration allows one to position the target graphene flake (which is
attached to the bottom of the pmma, facing the clean target chip) at a
suitable location. When the alignment of the graphene flake and the target
chip is satisfactory, the two are placed into contact and the heater is turned
on. The heat softens the pmma and improves the cohesion between the
graphene flake and the SiO2 substrate.

After a short time, the metal piece can be removed and the pmma is now
residing on top of the chip, with the graphene flake in between. The chip is
then placed into acetone for several hours, which removes the pmma. After
the chip is taken out of the acetone, it is rinsed in isopropanol and dried
with a nitrogen flow. The graphene flake is now located on a clean chip with
a grid of markers and is ready to be processed.

(a) (b)

Figure 2.1: a) Optical microscopy image of single layer graphene. b) Optical
microscopy of single crystal monolayer graphene grown by cvd.
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Figure 2.2:
Optical microscopy image show-
ing the shape of contacts and sgm
markers patterened in developed
pmma, before metallization. It
is difficult to see the (exfoliated)
graphene flake through the pmma.

Chemical Vapour Deposition

In the case of cvd graphene, the procedure is similar. Large, single crystal,
monolayer graphene flakes are grown at nest on copper foil [31]. They are
single crystals which can be up to several mm2 long and wide (figure 2.1b on
the previous page), and are of a quality comparable to exfoliated graphene
on SiO2 [32]. The samples are spin-coated with pmma film, which is subse-
quently removed —together with the graphene— from the Cu substrate by
electrochemical delamination [33]. The pmma, carrying the graphene flakes,
is then again collected with the metal piece, and the following procedure is
identical to the one described in the section above.

Defining contacts

With the graphene on top of the chip a 300 nm thick layer of pmma is
spin-coated on top of the chip and the chip is baked at 120 ◦C for 15 minutes
to crosslink the pmma. Then, using a Zeiss Raith pattern generator and
elphy multibeam plus Electron Beam Lithography software, the pmma is
exposed in a designed pattern using the pre existing uv makers as a reference
for the position. In the areas where the pmma is exposed to the electron
beam, the high energy electrons deposit their energy and break the bonds
holding the pmma together, making it much easier to remove.

In this first lithography step, the ohmic contacts are patterned, connecting
the graphene flake with the large, pre existing pads, which will later be used
for bonding. In the same step, also a coordinate system of afm markers is
defined, which will be needed to find the device with atomic force microscopy.
Finally, a set of Electron Beam Lithography markers are added to make sure
that the second ebl patterning step will align nicely with the first.

After the exposure is complete, the sample is developed in ar 600-56 for
two minutes. This removes the exposed pmma, but leaves the pmma in the
areas which have not been exposed to the electron beam. The patterned
features are checked with an optical microscope (figure 2.2), and the sample
is then placed in a vacuum chamber where metal will be evaporated on the
sample.
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Figure 2.3:
Optical microscopy image taken
before etching the ribbon. The
graphene in the dark region
will be removed by an oxygen
plasma. The shape of the de-
vice is patterned using Electron
Beam Lithography.

Evaporation and lift-off

The vacuum chamber of the evaporator is pumped until the pressure reaches≈
10−6 mbar. A thin layer of chromium is first thermally evaporated, followed
by a layer of gold. The layers have a thickness of ≈ 5 nm and 50 nm,
respectively. The metal will cover the whole sample surface, i.e. where there
is pmma, the metal will be on top of it, and where the pmma was removed,
the metal will be attached to the surface of the substrate.

The sample is then left in acetone for at least several hours, dissolving
the pmma. In the areas where the metal is unwanted, it is now no longer
or barely supported. By flushing acetone over the sample with a syringe,
the unwanted metal is washed away and only the patterned structures (the
contacts, afm markers and ebl markers) remain. After removing any pmma
leftovers with acetone, the sample is again rinsed with isopropanol and dried
with a nitrogen flow.

Etching the ribbon

Pmma is again spin-coated on the sample and a second ebl step is performed.
The ebl makers are used to precisely align the two exposures. This time, an
area on top of and around the graphene flake is exposed. The exposure is
then developed, as in the first ebl step. The graphene in the exposed areas
will be removed in the next step, defining the desired shape of the device.

There is now pmma covering the desired final device, i.e. the ribbon.
There is still graphene around what will become the ribbon, but this is no
longer protected by pmma, see figure 2.3. The device is placed in a Reactive
Ion Etching chamber, and using an oxygen plasma, the exposed graphene is
etched away in 30 seconds. After removing the remaining pmma, the device
is finished.

None of the devices used where annealed after fabrication. In the final
step, the chip with the complete device is glued to a chip carrier, using
conductive silver paste to connect the backgate to the chip carrier. Using
a wedge bonder, the large pads on the chip are connect to the pads of the
chip carrier with a thin gold wire. The device can now be characterized by
mounting the chip carrier in the experimental set-up.
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(a) (b)

Figure 2.4: a) Design for the first set of single ribbon devices. b) Design for
the second set of single ribbon devices. The afm marker grid is shown in
dark green. Both ribbons are 800 nm wide.

2.2 Device design

The goal of this work is to investigate the backscattering of edge channels.
For this to happen it must be possible to scatter these channels from one edge
of the sample to the other, opposing edge (see also section 1.2 on page 4).
This implies that the width of the device should not be larger than the ‘spot
size’1 the sgm can induce.

Assuming the tip has the desired sharp and round shape, the effect of
the tip will also be round. Since it is important that the effect of the tip is
significant in only a section of the device, an elongated, narrow Hall bar like
device or ribbon, is the obvious choice.

Although the ribbon cannot be too wide (compared to its length), there
is also a danger of making it too narrow, for several reasons. It is theo-
rized that when decreasing the width to below a hundred nanometre or so,
transversal quantization becomes important; opening a band gap. When the
width becomes very small, impurities can create quantum dot-like structures,
strongly effecting transport. Finally, in extremely narrow devices, one enters
a 1d regime in which the quantum Hall effect can behave very differently.
See section 1.1 on page 3 for more information and references.

Single ribbon devices

The first set of nanoribbon devices were designed by S. Xiang, in a Hall
bar-like configuration for four probe measurements (figure 2.4a). These
devices had a width of between 0.8 and 1 µm and were several micrometers

1The spot size refers to the area in which the gating effect of the tip is significant. This
depends on several factors, most importantly the voltage bias applied to the tip, and the
distance between the tip and the device. See section 4.2 on page 39.
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long2. All other devices used for this work, especially those used for the sgm
studies, were designed and produced independently by the author.

When it later became clear that new devices would be necessary for sgm
experiments, a second set was made with a slightly modified design (see
figure 2.4b on the preceding page and figure 2.5). In order to reduce the
invasiveness of the contacts [34], graphene leads were added to the design.
This also has the advantage that the ribbon and therefore the geometrical
factor is more clearly defined. Furthermore, the new design eliminated abrupt
changes in the width of the graphene, which might affect transport due to
mode-matching effects. These devices had a width of W ≈ 800 nm and were
4 to 7 µm long.

The first set contained devices made from exfoliated graphene as well
as devices made from cvd graphene. It was found that the quality of the
exfoliated flakes was consistently higher than that of the cvd flakes. Since
the extra large size of the cvd graphene flakes is not relevant for single
ribbon devices, only samples fabricated from exfoliated graphene were used
in the second set.

(a) (b)

Figure 2.5: a) and b) Two sem pictures of a prototype device. The ribbon is
800 µm wide and roughly 2.5 nm long, making it relatively short. Note that
the graphene —in this and in other devices— tends to break in the graphene
‘leads’, close to the contacts (although the same sometimes happens in the
ribbon itself). These fractures were regularly noticed after the device had
been used in an experiment. A possible explanation is the strain induced in
the graphene during cooling and warming up the sample between ambient and
liquid nitrogen/helium temperatures, due to the different thermal expansion
coefficients of the graphene, the metal contacts and the substrate. Notably:
for certain temperature regions the expansion coefficient of graphene is
negative.

2The ‘length’ of the device/ribbon refers to the distance between the centres of the two
longitudinal contacts throughout this thesis.
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(a) (b)

Figure 2.6: a) The design of a device that consists of a series of six ribbons,
which decrease in width from 600 to 100 nm. All ribbons have a length that
is equal to four times their width. The device is fabricated using large, single
crystal graphene flakes grown by cvd. The ribbons ‘share’ voltage probes. b)
A zoom-in showing the two largest ribbons, which are 600 nm wide, 2.4 µm
long and 500 nm wide, 2 µm long, respectively.

A series of ribbons

Besides the single ribbon devices which were studied with the Scanning Gate
Microscope, a set of three identical devices, each of which featured a series of
ribbons was produced (after the first set of single ribbon devices, but before
the second). The purpose of these devices was to investigate the effect of the
ribbon width on transport properties. These devices featured six ribbons in
series, ranging in size from 100 to 600 nm, see figure 2.6 and figure 2.7 on the
next page. Every ribbon within these devices has the same geometric factor
L/W = 4 (the thinner ribbons are also shorter) so that it is straightforward
to compare their resitivities.

These devices were made with cvd graphene flakes, since their large
size allows one to place all six ribbons in one single device. This makes
processing efficient and is convenient during the experiment, where one does
not have to exchange and cool down many devices. Furthermore, since every
device contains a set of ribbons, it is easy to make a fair comparison between
the ribbons of different widths within one device, since they are made from
one single crystal and their orientation with respect to the crystal lattice is
identical.
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(a) (b)

Figure 2.7: a) A device with six nanoribbons seen through an optical mi-
croscope. The big gold pads on the left are used for bonding. The contacts
are clearly visible and converge to the device, which is located at the centre
of a square afm marker grid (the white dashed line). Several other cvd
crystals can be seen, as indicated by the light blue, dashed lines. b) A sem
micrograph that shows a close up of the 600 nm ribbon. The ohmic contacts
appear white. Graphene covers the dark grey areas and the regions where
graphene has been etched away are light grey. The nanoribbon is shown at
the centre and is electrically isolated from the graphene at the sides. The
source contact is connected at the top of this picture, where the central
graphene strip diverges.



Chapter 3

Characterization

This chapter briefly discusses the set ups and methods used to test the
samples before starting the sgm experiment. A separate section of this
chapter is devoted to the devices which featured a series of six graphene
ribbons. For information about the sgm set up and details regarding the
sgm measurements see chapter 4 on page 33.

3.1 Set up

All measurements were performed using one or multiple lock-in amplifiers
made by Stanford Research Systems (model SR830). Using the ac output,
the source contact was biased with a large, 10 MΩ resistor in series, such
that the current is effectively constant. To determine the device resistance
we used four probe measurements in the standard Hall bar configuration, to
avoid being sensitive to the contact resistances.

To modulate the backgate, a Keithley 2614B SourceMeter was used, and
to bias the sgm tip we used a Yokogawa 7651 programmable dc source.

Preliminary characterization at room temperature was done using a
‘dipstick’, generally at a pressure of ≈ 10−4 mbar. The dipstick was also
cooled down to liquid nitrogen and liquid helium temperatures.

3.2 Methods

Before moving the (single ribbon) devices to the Scanning Gate Microscope
set-up, which is a complex and time consuming process, they where first
characterized in less complicated set-ups. The main goal of these experiments
was to confirm that the devices could exhibit a well defined quantum Hall
effect, which is required for our sgm experiments.

The first step is to mount the device in a ‘dipstick’ which typically reaches
a vacuum of ≈ 10−4 mbar. When the pressure is satisfactory, all contacts
resistances are checked, and the longitudinal voltage drop Vxx is measured

26
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Figure 3.1: An example of a backgate sweep at T = 300 mK, including a
fit with equation (3.4) on the following page. The estimated mobility and
residual charge density from this fit: µ ≈ 15.000 cm/Vs2 and n0 ≈ 3.4 ∗ 1010

cm−2.

while sweeping the backgate. The position of maximum resistance, known
as the Charge Neutrality Point (cnp or Dirac point), and the shape of this
‘Dirac peak’ offer the first hints of the device quality. Ideally, the position of
the cnp should be at zero voltage on the backgate, Vbg = 0. This signifies that
the graphene is not doped by unwanted defects, impurities or absorbates and
thus the Fermi energy EF coincides with the Dirac energy ED. Realistically,
a device with the cnp at Vcnp ≤ 10 V on the backgate is considered good.

The resistivity ρ of the graphene is given by

ρ =
W

L
R, (3.1)

with R = Vxx/ISD and L/W its geometrical factor (the length divided by
the width). Since the magnetic field is zero, the conductivity is simply

σ =
1

ρ
= neµ, (3.2)

where n is the electron (hole) density, e the electron (hole) charge ≈ ±1.6 ∗
10−19 C and µ the electron (hole) mobility.

The charge induced in the fet is estimated by treating the device as one
plate of a parallel plate capacitor, and the backgate as the other. In this
case the dielectric filling between the two plates is a 300 nm thick layer of
SiO2, with ε ≈ 3.9. Given the capacitance C the induced charge is

n =
C

e
|Vbg−Vcnp| =

11.5

1.6 ∗ 10−19
[µF/cm2]

[C]
= 7.2∗1010[V −1cm−2]∗|Vbg−Vcnp|

(3.3)
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Putting everything together, we find the following function, which is used
to fit the backgate sweep in fitted in Origin:

R =
L

W

(
e ∗ µ ∗

√
n20 + (7.2 ∗ 1010 ∗ (Vbg − Vcnp))2

)−1
(3.4)

n0 is called the ‘left over’ or residual charge and represents the the charge
inhomogeneity at the cnp.

From the fit the parameters µ and n0 are extracted, giving an estimate
of the sample quality (see figure 3.1 on the previous page). The procedure is
repeated at low temperatures. For the samples measured in a magnetic field,
electron density n and the Hall moblity µ can be estimated using the Hall
effect and the Shubnikov-de Haas oscillations. The mobilities of the single
ribbon devices, which were measured in the sgm varied between 8.000 and
14.000 cm2/Vs.

The first set of single ribbon devices was characterized at temperatures
down to 300 mK and in magnetic fields up to 10 T. The devices of the second
set of single ribbon devices were only tested in the dipstick. Based the results
of the equation (3.4) and previous experience, samples were selected and
moved into the sgm. The devices typically showed nice quantum Hall traces,
see figure 3.2 on the next page, figure 1.3 on page 6 and figure 3.3 on the
next page. The quantum Hall plateaus are broad and well developed and
Rxy increases monotonously. The longitudinal resistance Rxx shows clear
Shubnikov-de Haas oscillations before becoming zero at B = 3 Tesla.

Besides the quantum Hall effect, also weak localization and universal
conductance fluctuations were observed, but are not shown, nor discussed
here.

3.3 Multiple ribbons device

Besides the single ribbon devices, also a set of devices with six ribbons, with
widths between 100 and 600 nm, where characterized (see section 2.2 on
page 24). All ribbons in these devices have the same geometrical factor
L/W = 4, so their resistance ratios correspond to their resistivity ratios.
In total three devices of this kind where produced, with the purpose of
investigating the influence of ribbon width on transport properties.

Four probe measurements where performed at room temperature and at
4.2 Kelvin, see figure 3.4 on page 30 and figure 3.5 on page 30. The back
gate sweeps were fitted with equation (3.4) to extract the electron mobility
µ and residual charge n0.

The resistivity of the ribbons increases with decreasing ribbon width.
One possible explanation for this is that the disordered edge, which tends to
localize states [35], becomes a relatively larger part of the ribbons as their
width decreases. There is a striking increase in resistance between room
temperature and 4.2 Kelvin, for the smallest ribbon. The high resistance close
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Figure 3.2: The quantum Hall effect as seen in device C9, while sweeping
the magnetic field at 300 mK at Vbg = 0.

Figure 3.3: A Landau fan plot of the longitudinal resistance Rxx, while
sweeping the backgate from -30 to +35 Volt and sweeping the magnetic field
from 8 to 0 Tesla. Blue denotes a zero resistance, while red signifies a high
resistance. ± 7 Landau levels are clearly visible.
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(a) (b)

Figure 3.4: a) The longitudinal resistances of five ribbons of one device (due to
a bug in the ebl software, the 100 nm ribbon came out wrong). As all ribbons
have the same geometrical factor, their Rxx plotted here is representative
of their resistivity, which increases significantly for the thinner ribbons. b)
The Rxx resistance of the same ribbons at 4.2 K. Universal conductance
fluctuations are visible, and the resistance has increased dramatically for
the thinner ribbons. The maximum resistance of the 200 nm ribbon has
increased from 65 kΩ to 350 kΩ, while the maximum resistance of the 600
nm wide ribbon has changed from 25 kΩ to 37 kΩ.

(a)
(b)

Figure 3.5: Scatter plots of the mobility and of the residual charge density
estimated through a fit of equation (3.4) on page 28. Both the mobility and
the residual charge density decrease whith decreasing ribbon width.
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Figure 3.6: A post mortem scanning
electron microscope image of one of the
three devices that were produced with
a series of six ribbons. A total of six
contacts have been severely damaged,
from what appears to be a catastrophic
discharge of static electricity.

the the Charge Neutrality Point is due to the combined effect of a decrease
in mobility µ from 2, 500 to 1, 000, and a decrease of n0 from 2.2× 1011 to
0.8 × 1011. Thus the mobility and n0 both decrease by a factor of ≈ 2.5.
Since R ∼= ρ = 1/neµ, this leads to an increase of R by a factor of ≈ 6.

Also notably are the large conductance fluctuations for this 200 nm wide
ribbon at 4.2 K. These fluctuations were reproducible and were typically
stable for several hours. This increase in both resistance and fluctuations
could be due to an approach of the 1d regime, where coherent effects like
conductance fluctuations can dominate the resistance [36, 37].

The original intention was to also characterize these devices in the quan-
tum Hall regime. Unfortunately, the devices that looked promising both
failed catastrophically before we were able to collect any data in a magnetic
field (figure 3.6). A likely cause for this failure would be an electrostatic
discharge, for which these devices could be extra sensitive due to their design.

Since it was clear that the mobility of the ribbons decreased with decreas-
ing width and due to the lack of data in the quantum Hall regime —which is
most important for the intended sgm experiments— it was decided to keep
the width of the original devices. That is, the second set of single ribbon
devices were, like the first, produced with a width of 800 nm, although their
design was slightly modified.

3.4 Hysteresis

Several devices showed a particular, temperature dependent hysteresis. This
effect was seen in most devices, but not in all. This hysteresis was completely
absent at room temperature, but increases in magnitude at lower tempera-
tures. Although we have only a small set of different temperatures available,
the difference between 4.2 K and 300 mK is striking.

On one occasion, this hysteresis was monitored while the sample warmed
up from 300 mK to 4.2 K. The magnitude of the hysteresis decreased greatly
as the sample temperature approached 4.2 K.

This effect was not only seen across multiple devices, but also in different
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(a) (b) (c)

Figure 3.7: The temperature dependence of the hysteresis in a 400 nm wide
ribbon. The black curves are taking sweeping the backgate from negative to
positive voltages, and visa versa for the red curves. a) At room temperature
there is no hysteresis. b) At 4.2 K, the distance between the two peaks is
almost 30 V. c) At 300 mK, the magnitude of the hysteresis is 70 V.

set-ups, different cryostats and with different measuring equipment. Further-
more, using the same set-up, the hysteresis was observed in some devices,
but not in others, even though the devices were prepared in nominally the
same manner and around the same time. Thus is seems most likely that the
hysteresis is not an artefact of measurement, but an intrinsic property of the
devices.

The hysteresis appears to be very robust, as it decays very slowly, over
the span of many hours. Furthermore, it is notable that the shape of the
curve is not altered between many up and down sweeps. This suggest that,
if we charge some parasitic capacitance, it must be far away from the device,
such that its effect is homogeneous. Nevertheless, the cause of this particular
hysteresis is not understood.

In order to account for this hysteresis, extra care was taken too make
sure that different measurements are comparable. All the presented data
was taken after first sweeping the backgate up and down at least once, such
that the device was in a stable condition. Unless otherwise specified, all
the curves shown are taken while sweeping the backgate from negative to
positive voltages.



Chapter 4

Scanning Gate Microscopy

In this chapter, the measurements performed with our Scanning Gate Micro-
scope are described, presented, and discussed. The first section gives a brief
description of the sgm set-up. The second section explains the experimental
procedures and the results. In the third and final section of this chapter,
these results are interpreted and discussed.

4.1 Set-up

For the sgm measurements we used a modified commercial Attocube afm
system. Tungsten tips are prepared in our laboratory by chemical etching
and subsequently glued to a tuning fork (figure 4.1a on the next page). The
afm operates in non-contact mode; the system detects the damping of the
oscillation amplitude of the tuning fork that occurs when the tip is close to
the sample surface, due to the shear force between the tip and the sample.

The microscope head contains a stack of piezo elements that allow for
both course and fine movement, see figure 4.2 on the following page. The
device sample holder is mounted opposite to the tip, and the whole system is
thermally connected to the 3He reservoir in the cold finger. The 3He reservoir
is itself adjacent to the 1K pot. By pumping on the 4He in the 1K pot, the
1K pot reaches a temperature of 1.6 K, and the 3He becomes liquid. When
all the 3He is liquefied, the 3He reservoir is pumped with a charcoal pump.
This way the cryostat reaches its base temperature of ≈ 300 mK. The entire
cryostat is designed to be isolated from vibrations and noise. Note that for
the sample discussed in this chapter, all measurements were performed at
4.2 K, to avoid a large hysteresis (see section 3.4 on page 31).

Atomic Force Microscopy

Initially, the ribbon is located through afm, with the help of a coordinate
grid that has been patterned around the device, together with the contacts.

33
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(a) (b)

Figure 4.1: a) SEM micrograph showing the tip, which is glued to one of the
prongs of a tuning fork. b) False colour AFM image of the G4 nanoribbon,
which has a width of 800 nm and is indicated by the dashed lines. The
voltage probes, in Hall bar configuration are relatively high (50− 80 nm)
and appear yellow.

Figure 4.2: a) The microscope assembled. b) The lower part of the microscope
consists of a titanium spacer, the piezo element for course movement in the
z-direction, and the tip. c) The device, glued in a sample holder, is mounted
on the top part of the microscope, on a stack of piezo elements for fine motion
and for course motion in the x and y-direction. d) A close up of a device in
the assembled microscope, showing the tuning fork and the microscope tip.
Figure adapted from [5].
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Figure 4.3: A schematic illustration of
the electric field (and by extension the
potential) that is generated applying
a bias to the conductive tungsten tip.
Electric charge accumulates at points
where the surface of a conductor has
a large curvature. A sharp tip there-
fore focuses the electric field in a small
region underneath the tip. The gener-
ated potential is typically assumed to
be Lorentzian in shape.

The high resolution of the microscope allowed us to see the graphene device
in afm (figure 4.1b on the preceding page). A reference afm scan is taken
every morning to adjust for a small overnight drift. This scan is then used
to position the tip for the rest of the day.

4.2 Scanning Gate Microscopy

The goal of this work is to investigate the structure of quantum Hall edge
channels in graphene by inducing backscattering of these channels with the
sgm tip. The tip is made of tungsten, which has several desirable properties.
Firstly and most importantly, it is conductive, and can therefore be used as
a (scanning) gate by applying a voltage to the tip. Secondly, the hardness of
the material makes it very suitable for afm.

Because charge tends to accumulate at surfaces with a large curvature,
the tip focusses the electric field, and thus the electrostatic potential, see
figure 4.3. This potential is typically assumed to be Lorentzian in shape
[38] and is particularly strong in the space directly beneath the sharp tip.
The tip potential is somewhat screened by the charge carriers in the device,
which tends to decrease the effective gating area, but can also create more
complicated potential landscapes depending on the device geometry [39].
Since the graphene device is fabricated on top of the substrate, it is direly
accessible with the tip and —avoiding the metal contacts— one can approach
the device to ≈ 30 nm1.

The afm has typically a resolution between 1 and 10 nm, depending
on the sharpness of the tip. This sharpness give a rough indication of the
minimal area that can be gated by the tip, which is small compared to the

1In theory one can get as close with the tip as is desired, but you risk a catastrophic
short between the graphene device and the conductive tip, which can be at 20 - 30 Volt.
For the same reasons the (high) contacts have to be carefully avoided.
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length and width of the nanoribbons (6 µm and 800 nm, respectively). The
strength of the tip gating can be controlled by tuning the applied bias. A
higher bias equals stronger gating, and also gating in a larger area. The area
in which the tip gating is effective can also be tuned by changing the distance
between the graphene ribbon and the tip. A larger (smaller) distance implies
a weaker (stronger) effect in a larger (smaller) area. Thus, given the correct
tuning of the tip distance and bias, the tip is expected to have a strong
gating effect in an area which is small compared to the 6 µm long ribbon.

Note that throughout the following sections, ‘small(er)’ and ‘large(r)’
are used exclusively to refer to the area of the tip gating effect. When the
strength of the electrostatic potential is discussed, the terms ‘strong(er)’ and
‘weak(er)’ are used.

To know the spot size (the effective gating area) of the tip is not a
straightforward task. One can in principle calculate the expected potential
shape and strength. However, to accurately model the tip one needs to
know its shape, which is generally not know or only determined after the
experiment. And even then one should somehow account for screening by
the sample and other effects that distort the tip potential, something that is
generally not feasible.

When working with semi-conducting 2degs, the spot size is generally
defined as the depletion zone beneath the tip. This can be obtained experi-
mentally through various ways. One can for example look at interference
patterns, created by electrons backscattering on the sgm spot, or look at the
bias required to pinch of a quantum point contact [40, 41].

When working with graphene, most of these techniques become inapplica-
ble, due to the bipolar nature of charge carriers in graphene. It is not possible
to create a depletion zone, and one cannot completely block transport. Even
if a puddle of opposite charge is induced, a certain minimum transport can
and will still take place, as the charge carriers can propagate through these
puddles, possibly by Klein tunnelling. In fact, close to the charge neutrality
point graphene is naturally full of these charge puddles, as a consequence
of an inhomogeneous potential and ripples. These charge puddles can be
visualised with a sgm [42, 43]. In short, determining the extent of the tip
effect on our samples is not trivial.

Detecting backscattering

The electrostatic potential in a region of the graphene determines the local
charge carrier density. This in turn influences the local filling factor: a high
charge carrier density equals a higher filling factor in the same magnetic
field, and visa versa (see section 1.2 on page 4). Thus, we have a handle to
influence the edge channels.

For example: we tune the filling factor in the whole device to ν = −6 by
applying a negative voltage to the backgate. Then, we move the tip close to
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the centre of the ribbon and apply a positve voltage to counteract the effect
of the backgate. We tune the tip potential such that the gating of the tip is
only effective in the centre of the ribbon. This allows us to locally induce
filling factor ν = −2, so that we now have a pp′p junction with p = −6 and
p′ = −2, as shown in figure 4.4.

Recall from section 1.3 on page 10 that one can only measure backscat-
tering directly if the p′ region does not extend to the contacts. If the p′

region is well localized at the centre of the ribbon, one can monitor either
the diagonal (V +

D ) or longitudinal (Vxx) voltage drop. The former reflects
the minimum filling factor p′ in the centre of the device. The latter —which
is normally zero in quantized conditions— will now take a finite value.

In the case of p = ν = −6 and p′ = ν = −2, Rxx will show a plateau at
8.7 kΩ. To check the filling factor in the p region, one can simply measure the
classical Hall voltage Vxy on either or on both sides of the device. This voltage
drop reflects only the filling factors at the xy-contacts, even if quantum Hall
edge channels are backscattered somewhere in the device. See section 1.3 on
page 10 for detailed information about the different configurations and the
expected influence on the Hall resistances.

Figure 4.4: A schematic illustration of the quantum Hall effect in a Hall bar.
The extra potential induced by the sgm tip is localized in the centre of the
device, where it creates a local region of filling factor -2. The edge channels
corresponding to the second Landau level cannot enter this region and are
forced to backscatter.

To determine the effect of the biased tip, we can monitor Rxx and Rxy
while the tip is at a fixed position, but also while scanning over an area. By
scanning with the tip, images are generated which illustrate the effect of the
tip at a certain position on Rxx and Rxy. This allows one to reconstruct how
electronic transport is affected and evolves with the tip position.

The unique behaviour of charge carriers in graphene makes it also possible
to induce regions of different charge carrier polarity. For example, a npn
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junction can be created through local electrostatic gating. This however,
creates a new effect which is dependent on the equilibration of counter-
propagating edge channels, i.e. the p and n type edge channels which meet
at the junction between the two regions. This dynamic manifests itself as
fractional values of the Hall resistance [27]. These fractional values are
dependent on the redistribution of the injected charge carriers over the
counter propagating edge channels, while the carriers flow from source to
drain. The effect is unrelated to the fractional quantum Hall effect.

This phenomenon is interesting, certainly in combination with the sgm,
which grants one a unique control over the junction. It should be straight-
forward to induce npn junctions with the sgm, using the same approach we
used to induce, for example, pp′p junctions. Unfortunately time constraints
prohibited any experiments of this nature. Hence, we focused on backscat-
tering channels without creating a bipolar junction, i.e. we avoided inducing
regions of different charge carrier polarities.

If the tip is effective in a sufficiently small area, one can reveal the
structure of the edge channels —if there is any— by moving the tip towards
the ribbon [3, 4]. In the rest of this section we will discuss what would
happen if reconstruction was taking place, in terms of compressible (c) and
incompressible (i) strips.

Let us position the tip far away from the sample, which is at bulk filling
factor -6, such that the bulk is insulating and the edge channels do not
backscatter to the other edge (see also section 1.2 on page 8). When the tip
approaches the sample, it will start to ’feel’ the tip potential, and the edge
channels on the side closest to the tip will be pushed towards the centre.
Once the inner channels are close enough, they will begin to interact and
backscatter, causing the conductance to decrease; there is now a compressible
(c) strip at the centre [3].

Note that conductance here refers to the total source-drain conductance
through the device. This can be determined by measuring the two terminal
source-drain voltage, or, to avoid contact resistance, by measuring the
diagonal voltage V +

D . Another possibility is to look at Vxx (Rxx), which
should under these conditions also take non-zero quantized values, as a result
of the imbalance in the chemical potential between the left and right side
of the device (section 1.3 on page 10). Both Rxx and V +

D contain the same
information. In the measurements presented here we will focus on Rxx.

As the tip moves closer, this c strip shrinks until the channels are
completely backscattered and the conductance is lowered from 6 e

2

h to 2 e
2

h .
There is now again an incompressible strip at the centre of the ribbon,
isolating the remaining edge channels.

Moving the tip even closer will again decrease the width of the i strip,
but the conductance will still be quantized. Thus, when the system is in an
i state, a plateau will appear in the conductance. The width of this plateau
in real space, i.e. the distance you have to move the tip before you leave this
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(a) (b)

Figure 4.5: a) The position of the sgm tip at the centre of the graphene
ribbon. b) The tip positioned between two Hall contacts. In the experiment
the tip was positioned at the left side of the device in the afm scan.

plateau, equals two times the width of the incompressible strip (since there
are are two strips; one on each side of the sample). Likewise, the width of
the region in between two plateaus where the conductance monotonically
decreases, equals twice the width of the compressible region of the edge
channels. This way, one can directly probe the edge channel widths and
structure, with the sgm.

In this case the precision by which the tip can be positioned with respect
to the ribbon determines the resolution, since the channels will try to flow
around the region where the tip potential is higher than the energy of the
Landau level. Assuming the tip potential size is within the suitable range

—comparable to the width of the ribbon, smaller than the length of the
ribbon— the actual size of the spot has no influence on the lateral resolution
that can be achieved.

SGM measurements

To qualitatively calibrate the effect of the tip we first did several tests
while keeping the tip in one fixed position over the centre of the device at
zero magnetic field (figure 4.5a). This way one can determine the effect of
varying the applied bias and tip-sample distance. Changes in the shape and
position of the peak around the Charge Neutrality Point (when sweeping
the backgate), illustrate the effect of the tip. If the effective gating area is
comparable or larger than the sample, the curve will shift in its entirety, as
you are effectively adding another global (back)gate, which works with or
against the real backgate, depending on the relative voltages. If the effect is
local to only a (significant) part of the device, the cnp will split into two
[44].

Figure 4.6 on the following page shows a set of backgate sweeps taken
with the tip over the centre of the ribbon. Most notable is the shift of the
entire curve, which would imply that the tip effect is rather large compared
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(a) (b)

Figure 4.6: Data collected at T = 4.2 K and B = 0 T with the sgm tip over
the centre of the ribbon. a) The voltage applied to the sgm tip is changed
while the distance between the tip and the device is held constant at d ≈
100 nm. A global shift is notable. b) Four curves plotted with an offset for
better visibility.

to the 6 µm ribbon. In figure 4.6b, four curves are plotted with an offset for
better visibility.

The next logical step is to test the effect of a static tip in a ≈ 8 T magnetic
field. Because the Hall contacts are only sensitive to the local filling factor
at the contacts (see section 1.3 on page 10 for more details), the tip is now
placed in between two contacts (figure 4.5b on the preceding page). By using
three different lock-in amplifiers, one for Vxx, and one for both combinations
of Vxy contacts, we can compare the filling factors on the two ends of the
graphene ribbon, while applying a potential to one side of the device through
the sgm tip.

From figure 4.7 on the next page it is clear that by applying a suitable
bias to the tip, we can change the filling factor on one side of the device such
that we see the next plateau, while maintaining the original quantization
on the other side of the device2. While this configuration is convenient to
determine the effect of the tip, it does not allow one to directly see any
edge channel structure, even if it is clear a channels must be backscattered
somewhere in the device.

The two measurements discussed above give us valuable information
about the strength and size of the tip potential. When the tip is at the
centre of the ribbon, we see a global effect. On the other hand, we clearly
see a local effect when the tip is positioned at one side of the device. The
first measurement suggest that the area we gate through the tip is at least
≈ 6 µm long, along the length of the ribbon, regardless of the applied bias.
The second measurement implies an upper bound for the spot size; ≈ 12 µm

2The graphene ribbon is 5 µm long, and the (graphene) leads are ≈ 1 µm wide. Thus
the distance between the two centres of the longitudinal contacts is ≈ 6 µm.
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(a)

(b)

Figure 4.7: a) The tip position b) Data collected at T = 4.2 K, B = 8 T. This
figure shows the effect of the tip, which is stationary between the two Hall
contacts on the left side of the device. The backgate is tuned (to the hole
side) such that the Hall resistance is quantized at filing factor -6 when no
bias is applied to the tip. This corresponds to 6 edge channels or a resistance
of Rxy ≈ −4.3 kΩ. By applying a voltage to the sgm tip, the filling factor
on the left side is changed to ν = −2 (−12.9 kΩ), while the filling factor on
the right hand side remains unchanged. With the tip close to the sample,
we generally saw small variations in the resistance of the plateaus.

in the direction of the ribbon. The effect cannot be larger than twice the
ribbon’s length (12 µm) for if it was, we would also see a global effect with
the tip located at the side of the ribbon.

A backgate sweep of Rxx with the tip active between the contacts on the
left hand side clearly shows splitting (figure 4.8b on the following page). The
typical Rxx curve is split in two and every peak now appears twice.

Note that the peaks of the two sets have roughly the same height. One
would expect this if the potential in roughly half the device is changed. The
device can now be seen as a series of two devices, more or less of the same
length, while the difference in potential shifts one of the two curves with
respect to the backgate potential. Even though Rxx is now inhomogeneous
(when considering the entire device) the peaks still appear sharp, which
indicates that also the potential induced by the tip is relatively sharp. If the
tip potential was very shallow, the filling factor in the device would slowly
vary along its length, and the peaks in Rxx would be washed out.

We denote the two Rxx curves which combine to make the total longitu-
dinal resistance (one corresponding to each half of the device) a and b. If
an integer but different filling factor is induced in both sides of the device,
for example ν = −6 and ν = −2, the central peak of e.g. b2 would align
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(a) (b)

(c)

Figure 4.8: Data collected at T = 4.2 K and B = 8 T. a) A reference curve
of Rxx taken without the tip. b) When the tip is positioned between the two
contacts on the left side of the device, the Rxx resistance splits into two; the
two sets are denoted a and b. Note that the maximum values of the peaks
are almost half the value of those those in the reference curve. c) Rxx while
the tip is positioned at the centre of the ribbon, with a tip bias of 0, -20 and
+20 Volt. A noticeable global shift occurs. Although the shape of the curve
is broadened by the presence of the tip, the splitting as seen in b) is largely
absent.
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with the peak a1. Then, the regions in between the peaks, where Rxx is zero,
overlap and the total Rxx is also zero.

The tip is then placed at the centre of the device, and the measurement
is repeated, see figure 4.8c on the previous page. A global shift is seen,
comparable to the other measurements where the tip was placed at the
centre of the device. There is no clear splitting visible, although the peaks
in Rxx have become broader and less regular.

These results are consistent with those discussed above: when the tip
is at the centre, the effect seems to encompass the entire device, and only
a global shift is visible. When the tip is placed between the contacts at
the side of the ribbon, a local effect is clearly observable. Combining the
aforementioned results, we can conclude that the tip potential is effective in
an area of ≈ 7− 12 µm long, in the direction of the ribbon.

Having now a rough understanding of the size and magnitude of the
gating effect of the tip, we start scanning with the sgm while measuring
Rxx and Rxy on both sides of the device. This gives us images that reflect
the tip effect on these transport quantities with the tip at certain positions.
By changing the applied tip bias in between scans, we assemble a series of
images that show how the effects evolve. Since the effect of the tip appears
to be rather large, we choose a long scan range of 1× 15 µm2, perpendicular
to the ribbon (figure 4.9 on the following page).

We have selected this range such that the tip has no effect when it is
far from the ribbon. So we are sure that the measuring conditions with the
tip absent (far away) are identical over all separate scans. With the tip far
away, we tune the backgate to the filling factor ν = −6, and Rxx = 0. We
can confirm that the tip has no effect at the end of the scans, by looking at
the line profiles in figure 4.10 on page 45. As the tip is far from the ribbon
at the top of the scans, all Rxx curves converge to 0 resistance.

In the data set presented here we aim to backscatter the channels be-
longing to the second Landau level, by inducing a local region in the centre
of the ribbon where only the first Landau level is filled. Since the second
Landau level is fourfold degenerate, while the first Landau level is twofold
degenerate, this means we backscatter 4 of the 6 edge channels.

This data is representative of similar sets of data: we also performed
experiments backscattering channels at the electron side by creating a local
region with filling factor ν = +2 in a ribbon with filling factor ν = +6.
Moreover we repeated these backscattering experiments for the third Landau
level, i.e. with a global filling factor ν = ±10 and a local filling factor ν = ±6.
All these measurements show good agreement with those presented here.

The sgm scans of Rxx (figure 4.10 on page 45) show no plateaus. For a
tip bias of 0 or 3 Volt, Rxx increases monotonically as the tip approaches the
graphene ribbon, and reaches its maximum value when the tip is above the
ribbon, before decreasing again as the tip moves on. When a larger tip bias
is applied, the resistance reaches a maximum value of around 22 to 24 kΩ
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Figure 4.9: An afm picture illustrat-
ing the sgm scan range used. The four
side contacts are visible in white. The
position of the ribbon is roughly given
by the blue lines, and the red dashed
lines indicate the scan range, which is
1 × 15 µm2 and perpendicular to the
ribbon. Some ‘dirt’ can be seen as
white spots around and on the device.
Note that the ribbon is not positioned
at the centre of the scan range, which
is asymmetric with respect to the rib-
bon.

before it starts to decrease, until the tip passes over the ribbon and the curve
is traced back as the tip effect wanes.

As discussed in section 4.2 on page 36 and section 1.3 on page 10, Rxx
should take a quantized value when a set of edge channels is backscattered.
When backscattering four channels, by inducing local region with filling
factor -2 in a device with global filling factor -6, Rxx should become 8.7 kΩ.

The absence of any plateau suggest that we are unable to induce local
backscattering due to the size of the potential induced by the tip. Instead, it
appears that there is only a global potential, which changes the filling factor
in the entire device. To confirm this, we compare the line profiles presented
here, with the reference backgate sweep of Rxx, where there is no tip close to
the sample (figure 4.8a on page 42). The hight of the peak in Rxx between
filling factors -6 and -2 is ≈ 24 kΩ. This value is reached in the line scans,
which implies that at this point, the bulk of the ribbon becomes resitive
along the entire length of the device.

In figure 4.11 on page 46 the corresponding scans of Rxy are shown. In
the ideal case, these should maintain their original quantization (in this case
ν = −6) at all times. However, this is clearly not the case, as the filling
factor in between the contacts deviates from -6 when 6 or more Volts are
applied to the tip.

The measurement clearly shows that if 12 or more Volts are applied, the
regions in between the xy-contacts reach filling factor -2. This again indicates
that the effect of the sgm tip extends all the way to the sides of the ribbon.
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Figure 4.10: A series of sgm scans. From left to right, the same area is
scanned while applying a different voltage to the tip. Black equals a small
(zero) Rxx and a yellow/white colour indicates a high resistance. The position
of the ribbon is roughly indicated by the blue dashed line. When the tip
is far from the ribbon, at the top of the scan range, the whole ribbon is at
filling factor -6, and Rxx tends to zero. The plot on the right shows the line
profiles, taken along the centre of each scan, from bottom to top. Note that
the maximum resistance of ≈ 24 kΩ corresponds to the maximum resistance
in Rxx when the sample is in between filling factors -6 and -2, without the
tip close to the device. See figure 4.8a on page 42.
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Figure 4.11: The same series as figure 4.10 on the previous page; all three
scans (Rxx (4.10), Rxy at the left side, and Rxy at the right side of the device)
are taken simultaneously. The Hall resistance on both sides of the device
is shown. White/light yellow corresponds to a Hall resistance of −4.3 kΩ,
or filling factor -6. In the black area’s this resistance equals −12.9 kΩ, or
filling factor -2. The first small deviations from quantization at ν = −6 at
the sides are seen when 6 Volt is applied to the tip. At higher tip voltages a
transition to filling factor -2 is observed. There is some asymmetry between
the effect of the tip on the left and right side.
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4.3 Discussion

During the experiment the effect of the tip appeared to be different from
what we expected; as the effect was consistently weak in a rather large area.
After the experiment was finished, we dismounted the sgm tip to inspect
it with a scanning electron microscope. From the pictures in figure 4.12
on the following page one can immediately see that the tip was defective.
Most probably, the tip crashed into the sample surface while approaching
the sample after the cool-down to 4.2 K. After the cooldown, the afm briefly
lost resolution (while the resolution was good at room temperature, before
cooldown), before becoming of good quality again. Most likely, the tip picked
up some matter from the sample surface, presumably SiO2, which after
some reconstructing functioned as a new afm tip and provided a good afm
resolution.

The tip is severely bent and has been twisted into itself, as can be seen
in figure 4.12 on the next page. The end of the tungsten tip is now a big,
relatively flat and elongated area. From the calibration of the sem the size
of the ’tip’ can be estimated to be approximately 5 µm on the short side and
nearly three times longer on the long side, although the curvature of the tip in
the long direction should decrease the induced potential at the extremities of
the tip. The matter which is attached to the end and presumably functioned
as the new afm tip is more than 500 nm high.

These micrographs confirmed our suspicions that the tip was not working
properly, and the tip shape agrees well with the observed tip effect, if the
tip was oriented more or less perpendicular to the ribbon. Not only was the
real distance between the conducting tungsten and the device much larger
than expected —d ≈ 600 nm instead of d < 100 nm— but also the area of
the tip itself was comparable to the 6 µm long ribbon.

This explains why we were only able to measure a convincingly local
effect between the longitudinal contacts when the tip was positioned at one
side of the sample, while we saw no or only a weak local effect when the
tip was placed at the centre of the ribbon, see figure 4.8c on page 42 and
figure 4.6 on page 40. This also agrees with the sgm scans (figure 4.10 on
page 45), in which we see the line profiles of Rxx at different tip voltages
converge only when the distance between the tip and the ribbon becomes
d > 8 µm.

The height of the material attached to the tip —at least 500 nm— also
explained why we saw no to little change when changing the tip sample
distance between 30 and 150 nm (figures not shown here).

The last remaining question is now whether our sgm scans contain some
information regarding the structure of the edge channels. To directly measure
the backscattering of edge channels, and therefore to see the structure of these
edge channels, requires the backscattering to be well localized in between the
contacts. If the central region with the lower filling factor extends to one or
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(a) (b) (c)

Figure 4.12: a) A scanning electron microscopy image of the tip used, after
the experiment. The tip is obviously deformed. The wire from which the
tip is etched has a diameter of 50 µm. b) The same tip shown from the side.
Some material, presumably SiO2, is attached to the tip. c) A close up of the
tip rotated by 90 degrees. The tip appears flat and is approximately 6 µm
wide. The extra material seems roughly 500 nm high.

both of the side contacts, it is no longer possible to probe the edge channel
structure (section 1.3 on page 10). Thus, the large tip and by extension, the
large tip potential could be problematic.

The occurrence of plateaus in Rxx hinges on two important conditions.
First the device must be in state such that transport can only occur through
the edge channels. The bulk can only be conductive in some localized region
in the ribbon, and therefore allows backscattering between the opposing
edges in this region, but it should not add a separate contribution to the
overall conductivity. To fulfil this condition, a sharp tip potential is required,
which would induce a sharp transition between the regions of different filling
factor.

Secondly, it is necessary that the region where the quantization differs
from the global quantization induced by the backgate is well localized in
between the contacts. If this is not the case, one cannot probe the structure
of the edge channels, even if they are backscattered somewhere in the device.
This demand can be seen as a stronger version of the first condition as it
states that the filling factor must be well quantized at both ends of the
ribbon.

Finally, if electrostatic reconstruction takes place, the width of the
plateaus in Rxx would correspond to the width of the incompressible stripes,
and the transition region in between the plateaus corresponds to the width
of the compressible strips.

If the first condition does not hold (the bulk is conductive along the
device), the situation becomes significantly more complex, as one needs to find
a way to subtract the unwanted contribution of the bulk conductance, which
might obscure the sought features. Furthermore, the second requirement
would also be violated. As a consequence one would no longer be sensitive
to the edge channel structure.
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If no reconstruction takes place, one would still expect plateaus in Rxx
as the edge channels are backscattered one by one. However there would be
very sharp transitions between the different plateaus, as the compressible
regions would in this case very small to non existing, and the edge channels
would behave as monolithic objects.

It is trivial to note that in sgm scans of Rxx no plateau appear at the
theoretical value of 8.7 kΩ, nor at any other value. In fact, these sgm scans
effectively map out the Rxx curve taken without the tip close to the sample,
as the maximum resistance approaches the same value. This implies that
when the tip is over the centre of the ribbon, it has a global gating effect
which leads to a conducting bulk over the entire length of the ribbon.

This agrees with the scans of Rxy, which lose their exact quantization
—and in fact soon after reach the next plateau— already at a moderate tip
bias, while the tip is several micrometers from the corresponding contacts.

It is thus our conclusion that the gating effect of the tip, which was
comparable to the length of our device, was too large (in terms of affected
area) to reveal the structure of the edge channels.



Chapter 5

Conclusions

In this final chapter, a brief summary of the work presented here is given.
Hereafter some concluding remarks are given and a possible continuation of
this work is briefly discussed.

The goal of this work was to investigate and manipulate edge channel
transport in the quantum Hall regime through Scanning Gate Microscopy.
To perform this experiment one not only needs a sensitive sgm set up, which
allows transport measurements at low temperatures (down to 300 mK) and
moderately high magnetic fields (up to 8 Tesla), but also devices which
adhere to rather strict conditions. In the case of this thesis, graphene devices
with a high mobility were required, as the target experiment requires a
well defined quantum Hall effect. Furthermore, the device geometry has to
be carefully chosen and matched with the dimensions of the optimum tip
potential. Thus, the width of these devices should not be too large nor too
small, while retaining an adequate length and good performance.

Multiple graphene nanoribbon fets were designed and produced to facili-
tate this challenging experiment, based on experience and the characterization
of these devices through low temperature magneto-transport. These devices
were produced in the cleanroom at the nest laboratory and characterized
by low temperature magneto-transport measurements.

Ultimately, a largely successful sgm measurement was performed. We
were able to find and even see the graphene nanoribbon device through afm,
and observed a well defined quantum Hall effect in our devices. Moreover,
we have incontestably shown that we can control the filling factor on one
side of our nanoribbon device, while the original quantization is maintained
on the other side, ≈ 6 µm far away. This demonstrates the general feasibility
of our ideas and shows that we can achieve a local control of the quantum
Hall edge channels through sgm, even though the field effect of the sgm tip
turned out much larger than intended.
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Concluding remarks

Regrettably, we did not succeed in reaching our more ambitious goal of
revealing the the edge channel structure, due to a mechanical failure of our
sgm tip. The deformation of the tungsten tip greatly extended the area
effected by the tip potential, such that is was comparable with the length
of our device, while reducing the strength and probably the sharpness of
this potential. Hence, we are not yet able to answer the question of the
edge channel reconstruction, as it requires local gating with a precision that
was not obtained in this experimental run. However, I am confident that
this final touch would be straightforward with a new tip, now that we have
demonstrated that all other requirements are adhered to.

The daily life in experimental physics is particularly rich. It is filled to the
brim with challenges, failures, discoveries, disappointments, many promising
devices, more broken devices and a lot of hard work. There is of course
also the occasional success, which makes the whole journey worthwhile. I
assume that my experience at nest, with all its struggles and charms, was
no exceptional case.

Nevertheless it feels particularly unsatisfying to —after having overcome
so many challenges— fall short due to something so small as a deformed
sgm tip. Unfortunately a typical lack of time did not allow me to attempt
another try.

Assuming an opportunity will present itself later this year, I would be
more than happy to take one more stab at this beautiful experiment, which
has been the focus of my past year. The plan is simple for a change: all I
would need is a good tip!
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[18] M. Büttiker, “Absence of backscattering in the quantum Hall effect in
multiprobe conductors,” Phys. Rev. B, vol. 38, pp. 9375–9389, 1988.

[19] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer,
U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-
Temperature Quantum Hall Effect in Graphene,” Science)., vol. 315,
pp. 1379–1379, 2007.



BIBLIOGRAPHY 54

[20] A. J. M. Giesbers, U. Zeitler, M. I. Katsnelson, L. A. Ponomarenko,
T. M. Mohiuddin, and J. C. Maan, “Quantum-hall activation gaps in
graphene,” Phys. Rev. Lett., vol. 99, pp. 1–4, 2007.

[21] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, “Electrostatics of
edge channels,” Phys. Rev. B, vol. 46, pp. 4026–4034, 1992.

[22] D. B. Chklovskii, K. A. Matveev, and B. I. Shklovskii, “Ballistic con-
ductance of interacting electrons in the quantum Hall regime,” Phys.
Rev. B, vol. 47, no. 19, pp. 12605–12617, 1993.

[23] B. W. Alphenaar, P. L. McEuen, R. G. Wheeler, and R. N. Sacks,
“Selective equilibration among the current-carrying states in the quantum
hall regime,” Phys. Rev. Lett., vol. 64, pp. 677–680, 1990.

[24] C. Chamon and X.-G. Wen, “Sharp and smooth edge of quantum Hall
states,” Phys. Rev. B, vol. 49, p. 8227, 1994.

[25] P. G. Silvestrov and K. B. Efetov, “Charge accumulation at the bound-
aries of a graphene strip induced by a gate voltage: Electrostatic ap-
proach,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, pp. 1–5,
2008.

[26] J. R. Williams, L. Dicarlo, and C. M. Marcus, “Quantum Hall Effect in
a,” Science (80-. )., vol. 1, no. August, pp. 1–4, 2007.

[27] D. a. Abanin and L. S. Levitov, “Quantized Transport in Graphene p-n
Junctions in a Magnetic Field.,” Science, vol. 317, pp. 641–643, 2007.

[28] J. V. Velasco, G. Liu, W. Bao, and C. N. Lau, “Electrical transport in
high-quality graphene pnp junctions,” New J. Phys., vol. 11, 2009.

[29] P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang,
R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl.
Phys. Lett., vol. 91, 2007.

[30] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri,
F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K.
Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev.
Lett., vol. 97, pp. 1–4, 2006.

[31] V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun,
N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, “Rapid
CVD growth of millimetre-sized single crystal graphene using a cold-wall
reactor,” 2D Mater., vol. 2, no. 1, p. 014006, 2015.

[32] S. Xiang, V. Miseikis, L. Planat, S. Guiducci, S. Roddaro, C. Coletti,
and F. Beltram, “Low-temperature quantum transport in CVD-grown
single crystal graphene,” Nano Res., vol. 014006, p. 146805, 2015.



BIBLIOGRAPHY 55

[33] Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh,
“Electrochemical delamination of CVD-grown graphene film: Toward the
recyclable use of copper catalyst,” ACS Nano, vol. 5, pp. 9927–9933,
2011.

[34] B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, “Evi-
dence of the role of contacts on the observed electron-hole asymmetry
in graphene,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78,
pp. 1–4, 2008.

[35] M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel, “Edge-disorder-
induced Anderson localization and conduction gap in graphene nanorib-
bons,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 78, pp. 1–4,
2008.

[36] P. A. Lee and A. D. Stone, “Universal conductance fluctuations in
metals,” Phys. Rev. Lett., vol. 55, pp. 1622–1625, 1985.

[37] P. A. Lee, “Universal conductance fluctuations in metals: Effects of finite
temperature, interactions, and magnetic field,” Phys. Rev. B, vol. 35,
pp. 1039–1070, 1987.
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