
Low-temperature quantum transport in
2D materials

Starting from high quality CVD-grown single crystal graphene we fabricated both 
Hall-bars and Quantum Point Contacts which we extensively studied in the Quan-
tum Hall (QH) regime showing full control over backscattering and equilibration of 
the topologically-protected edge states. Strain engineering was also explored as 
an alternative and original method to modify the electronic properties and induce 
quantizing pseudomagnetic fields. To this end, we pulled free-standing graphene 
membranes and studied strain using micro-Raman. Finally, we observe weak local-
ization features in black Phosphorus from which information about elastic and in-
elastic scattering lengths is extracted. The anomalous temperature dependence of 
the inelastic scattering length is a signature of the in-plane crystalline anisotropy in 
black Phosphorus. 

Quantum Hall effects offer a formidable playground for the investigation of quan-
tum transport phenomena. Our low-temperature magneto-transport data show 
more than 12 flat and discernible half-integer quantum Hall plateaus in single-crystal 
CVD graphene samples on both the electron and hole sides of the Dirac point [1]. 
We furthermore demonstrate a buried split-gate architecture with this material. The 
control of the edge trajectories in these devices is demonstrated by observation of 
various fractional quantum resistances, as a result of a controllable inter-edge scat-
tering. Our architecture is particularly promising and unique in view of the investi-
gation of quantum transport via scanning probe microscopy, since graphene consti-
tutes the topmost layer of the device [2].
The unique electronic properties of graphene can be strongly influenced by a me-
chanical deformation of its carbon lattice. For peculiar strain profiles, it is possible 
to induce an effect which is equivalent to a quantizing magnetic field having two 
opposite signs for the two Dirac cones. We demonstrate a novel method to obtain a 
custom strain profile by depositing graphene on a patterned SiN membrane and by 
applying a differential pressure load (see Fig. 2). We show in particular that a uni-
axial deformation can be obtained for elliptical holes [3]. The strain induced on the 
graphene flake is studied by micro-Raman spectroscopy of the G and 2D peaks and 
based on a comparison with finite element models. Using simulations, we identify 
suitable architectures for the observation of pseudomagnetic fields.
Weak localization was observed in a black phosphorus field-effect transistor, see Fig. 
3, in excellent agreement with the Hikami-Larkin-Nagaoka model, from which char-
acteristic scattering lengths could be inferred. The temperature dependence of the 
phase coherence length Lϕ wa s found to decrease weaker than expected for two 
dimensions. Rather, the observed power law was found to be close to that observed 
previously in quasi-one-dimensional systems such as metallic nanowires and carbon 
nanotubes.
We attribute this more robust character of Lϕ to the highly anisotropic nature of the 
puckered honeycomb crystal structure of bP [4]. Ongoing work focuses on the fun-
ctionalization of exfoliated bP [5].
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Fig. 1
Landau fan diagram, in which the longitudinal resistance Rxx 
across the split gate is plotted as a function of back gate vol-
tage VBG and magnetic field B. More than 12 Landau levels can 
be seen in this diagram, indicated by their respective index. 
Color scale gives log(Rxx). Temperature T = 250 mK.
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Fig. 2
Unaxially strained graphene. (a) A graphene flake deposited 
on a SiN membrane with an elliptic hole is subject to a dif-
ferential pressure load DP. (b) Average strain is detected by 
measuring the local energy shift of the Raman peaks: the G 
peak shift is visible in the panel. (c) The presence of an aniso-
tropic strain component induces a splitting of the two G+ and 
G– phonon modes.

Fig. 3
Weak localization measurements. (a) The characteristic weak 
localization peak is observed in a plot of the normalized longi-
tudinal resistance (Rxx (B) − Rxx(0))/Rxx(0) versus magnetic field 
B and gate voltage Vg at T = 0.26 K.
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