

Tuning Hydrogen Adsorption on Graphene with Charge Doping

Yuya Murata and Stefan Heun

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

Tuning Hydrogen Adsorption on Graphene with Charge Doping

-> More hydrogen adsorb on graphene with hole doping.

H-chemisorbed graphene

graphane J. Sofo, A. Chaudhari, and G. Barber, Phys. Rev. B 75, 153401 (2007).

1. H storage

high gravimetric density 8.3%

(compressed gas tank in FCV 5.7 %)

A. Rossi, S. Piccinin, V. Pellegrini, S. de Gironcoli, [†] and V. Tozzini, J. Phys. Chem. C 119, 7900 (2015).

2. gap engineering

energy level diagram of graphene - H system

Tozzini, et al., Phys. Chem. Chem. Phys. 15, 80 (2013).

introduction

DFT calculation of activation energy for H desorption - charge doping

purpose of our work:

to experimentally investigate the influence of charge doping by a gate voltage $V_{\rm g}$ on the adsorption property of H on graphene

atomic D exposure onto graphene with V_g

- partial pressure of $D_2 = 5 \times 10^{-9}$ mbar (base pressure = 5×10^{-10} mbar)
- H cracker (Tectra); a tungsten capillary at 2000K
- The vacuum chamber is evacuated immediately after D exposure.
- characterization of electronic and morphological properties of graphene at RT
 - □ transport measurement
 - □ STM (RHK technology)

transport measurement

- Graphene is doped by charge transfer from the substrate and/or impurity.
- When the initial charge doping is compensated by V_g, the resistance becomes maximum. This V_g is called charge neutrality point (CNP).
- net charge density = (capacitance per area / e) × $(V_g CNP)$

• After D exposure, the CNP shifted to negative value.

-> electron doping

H is donor for graphene. (J. Chem. Phys. 135, 064705 (2011).)

• The CNP shift is larger with $V_{q} = -30V$ (hole doping), than 0V and +30V (electron).

• After D exposure, the resistance increased. -> created carrier scattering centers

- In vacuum, the CNP shifted back toward the initial value by 1-2 V 1 hour later.
 - The CNP shift during transport measurement (it takes 5 min) is negligibly small.
- The CNP and resistance recovered the initial values after vacuum annealing at 400°C for 2 hours. -> The influence by D exposure is reversible, not damage to graphene.

CNP shift after D exposure as a function of charge density

• The CNP shift is larger with hole doping, than no doping and electron doping.

STM

- graphene honeycomb lattice (amplitude ~0.02 nm, periodicity ~0.25 nm)
- corrugation of SiO₂ substrate (amplitude ~1 nm, periodicity ~15 nm)
- We could not identify D on graphene.
 - D density is too low?
 - The corrugation of SiO₂ substrate masks protrusions of D?

STS

The differential tunneling current dI was measured by a lock-in amplifier as a function of bias V.

- after D exposure with -30V
 - dl became smaller -> band gap opening
 - slightly shifted to negative value of bias V -> electron doping

STM

band gap determination following (Ugeda et. al., Nature mat. 13, 1091 (2014))

- take logarithm of dl
- find the noise floor (<0.1 pA), add the standard deviation of the noise floor
- draw lines between the point where the standard deviation crosses the spectra, and the point $\pm 0.1V$ away
- define the band onsets (VBM and CBM) where the lines intersect the noise floor

assume that D adsorption opened the band gap, induced the charge transfer to graphene, and the charge transfer per D is constant,

relationship between a band gap and H coverage by DFT	
$E_{gap} = 3.8(coverage/100)^{0.6}$	A. Rossi, S. Piccinin, V. Pellegrini, S. de Gironcoli, and V. Tozzini, J. Phys. Chem. C 119, 7900 (2015).
• band gap induced by D exposure	0.14±0.05 eV
D coverage	$0.4 \pm 0.2\%$
 CNP shift by D exposure 	-14 V
 increase of carrier density 	1.01 × 10 ¹² /cm ²
charge transfer per D	0.066 e (0.044-0.13e)

0.06 e per H by DFT

J. Katoch, D. Le, S. Singh, R. Rao, T. Rahman, and M. Ishigami, J. Phys. Cond. Matt. 28, 115301 (2016).

conclusion

- The influence of charge doping by a gate voltage V_g on the adsorption property of D on graphene was investigated by transport measurement and STM.
- The CNP shifted to negative value after D exposure. The shift was larger after D exposure on graphene with hole doping than without doping and with electron doping.
- The STS showed a band gap of 0.14 eV after D exposure on graphene with hole doping, while no gap without doping and with electron doping.
- Both the transport measurement and STS suggest that more D adsorb on graphene with hole doping than no doping and electron doping.
- This trend is consistent with theoretical report.
- This result demonstrated the possibility to control H adsorption/desorption on graphene via charge doping.

