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Abstract
Black Phosphorus (bP) has emerged as an interesting addition to the category of two-dimensional materials. Surface-science studies on this material are of great interest, but they are hindered
by bP's high reactivity to oxygen and water, a major challenge to scanning tunneling microscopy (STM) experiments. As a consequence, the large majority of these studies were realized by
cleaving a bulk crystal in situ. Here we present a study of surface modification on exfoliated bP flakes upon subsequent annealing steps, up to 550 °C, well above the sublimation temperature. In
particular, our attention is focused on the temperature range 375 °C - 400 °C, when sublimation starts, and a controlled desorption from the surface occurs with the formation of characteristic
well-aligned craters. There is an open debate in the literature about the crystallographic orientation of these craters, whether they align along the zig-zag or the armchair direction. Thanks to the
atomic resolution provided by STM, we are able to identify the orientation of the crystal with respect to the craters: the long axis of the craters is aligned along the zig-zag direction of bP. This
allows us to solve this controversy, and, moreover, to provide insight in the underlying desorption mechanism leading to crater formation.
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 Tunable bandgap ̴ 0.3 – 2.0 eV
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bP Exfoliation inside glove 
bag in inert atmosphere

Measurement 
inside UHV

a = (3.45 ± 0.43) Å, c = (4.40 ± 0.12) Å.

a = (2.46 ± 0.22) Å

• Some 
defects -
dark and 
bright 
spots

• Annealed in steps 
of 50 °C inside 
UHV chamber

• Measured by STM after 
each annealing step

• Starting 
temperature: 150 °C

• Clean surface - atomic 
resolution
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TEM image Selected Area Diffraction 
(SAD) pattern

Modelling by removal 
of P atoms - Preferential 
order of removal:
(a) Singly bonded P

Doubly bonded P
(b) Two A-B bonds
(c) One A-B, one B-C bond

Modelling by removal 
of P atoms - Preferential 

order of removal:

(a) Singly bonded P
Doubly bonded P

(b) One A-B, one B-C bond
(c) Two A-B bonds

Average height - (37.5 ±
22.4) nm (from 42 flakes)

Average area - (2.7 ± 3.2) 
µm2 (from 36 flakes)

Lorentzian fit of the 
histogram gives the
nominal values for flakes:

height of (29.1 ± 1.6) nm 
with FWHM (25.8 ± 4.9) nm

area of (1.0 ± 0.1) µm2 with 
FWHM of (1.7 ± 0.3) µm2

In summary, our study provides information on the annealing conditions (300 °C - 350 °C) yielding stable and clean bP flakes. It indicates the onset
of sample modification (375 °C - 400 °C) by eye-shaped crater formation due to desorption and further degradation of the sample at higher
temperatures (450 °C - 500 °C). Furthermore, we examined the craters' preferential long-axis alignment and assigned it to the crystallographic
[100] (zigzag) direction. This supports molecular P2 desorption as the dominating sublimation mechanism in these bP flakes. The present is the first
surface morphological study of exfoliated few layer bP using STM and provides insight on surface behavior and its degradation with temperature.
The latter properties are of much importance in view of the limitations on thermal processing of bP for any practical application of this material.
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