A Sensitive Calorimetric Technique to Study Energy (Heat) exchange at the Nano-Scale

L. Basta,¹ S. Veronesi,¹ Y. Murata,¹ T. Papa,¹ Z. Dubois,¹ N. Mishra,^{2,3} F. Fabbri,^{2,3} C. Coletti^{2,3} and S. Heun¹

¹NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silestro 12 I-56127 Pisa ²Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy

³Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Pisa, NEST Istituto Nanoscienze 04/19/2018

Outline

Motivations

- Brief introduction to calorimetry
- Heat exchange
- Calorimeters
- Experimentals
- Experimental setup
 - Thermometer calibration
 - Sample characterization
 - Ti source calibration

Results

- Hydrogen uptake
- Enthalpy of process evaluation

We need a new technique!

A simple gravimetric measurement or a standard calorimeter would allow to evaluate hydrogen storage in case of amounts of the order of milligrams.

Our sample is $\sim 5x5mm^2$, corresponding to measure $10^{-10}mol$ (\sim fraction of ng) of stored hydrogen.

Further motivations

- H-Storage (utilized for testing the technique)
- Sensors and catalyzers development
- High sensitivity bolometry
- Thermal imaging
- Investigations on small size samples

Further motivations

- H-Storage (utilized for testing the technique)
- Sensors and catalyzers development
- High sensitivity bolometry
- Thermal imaging
- Investigations on small size samples

Further motivations

- H-Storage (utilized for testing the technique)
- Sensors and catalyzers development
- High sensitivity bolometry
- Thermal imaging
- Investigations on small size samples

Further motivations

- H-Storage (utilized for testing the technique)
- Sensors and catalyzers development
- High sensitivity bolometry
- Thermal imaging
- Investigations on small size samples

Further motivations

- H-Storage (utilized for testing the technique)
- Sensors and catalyzers development
- High sensitivity bolometry
- Thermal imaging
- Investigations on small size samples

Heat exchange Calorimeters Experimentals

Outline

Heat exchange Calorimeters Experimentals

Ideal case

In an ideal case thermal losses can be neglected and temperature increases continuously as heating power is supplied.

S. Veronesi

energy exchange at nano-scal

Heat exchange Calorimeters Experimentals

Non-Ideal case

In the real world losses are always present.

$$C \cdot rac{dT}{dt} = P - \lambda \cdot (T - T_0)$$

where λ is the heat exchange coefficient. The solution is:

$$\Delta T(t) = T(t) - T_0 = \frac{P}{\lambda} \cdot (1 - e^{-\frac{t}{\tau}})$$

 $\tau = \frac{U}{1}$

where

<ロ>
<日>
<日>
<日>
<日>
<10</p>
<10</p

Heat exchange Calorimeters Experimentals

Non-Ideal case

ideal

$$\Delta Q = C \cdot \Delta T$$
$$C \cdot \frac{dT}{dt} = P$$

non-ideal

$$\Delta T(t) = T(t) - T_0 = \frac{P}{\lambda} \cdot (1 - e^{-\frac{t}{\tau}})$$

stationary state

$$rac{dT}{dt} = 0 \Rightarrow (T - T_0) = rac{P}{\lambda}$$

・ロ・・昼・・ ヨ・・ ヨー りくの

Heat exchange Calorimeters Experimentals

Non-Ideal case

ideal

$$\Delta Q = C \cdot \Delta T$$
$$C \cdot \frac{dT}{dt} = P$$

non-ideal

$$\Delta T(t) = T(t) - T_0 = \frac{P}{\lambda} \cdot (1 - e^{-\frac{t}{\tau}})$$

stationary state

$$\frac{dT}{dt} = 0 \Rightarrow (T - T_0) = \frac{P}{\lambda}$$

Heat exchange Calorimeters Experimentals

Non-Ideal case

ideal

$$\Delta Q = C \cdot \Delta T$$
$$C \cdot \frac{dT}{dt} = P$$

non-ideal

$$\Delta T(t) = T(t) - T_0 = \frac{P}{\lambda} \cdot (1 - e^{-\frac{t}{\tau}})$$

stationary state

$$\frac{dT}{dt} = 0 \Rightarrow (T - T_0) = \frac{P}{\lambda}$$

Heat exchange Calorimeters Experimentals

Heat/Energy balance

The measurement of energy/heat exchange between a system and environment is a very important issue in physical and chemical research. An energy flux accompanies any evolution of a system, giving invaluable information on the processes underlying the evolution.

Calorimetry is the proper tool to investigate heat/energy balance of a system. While the absolute amount of energy in a chemical system is difficult to measure or to calculate, the enthalpy variation is much easier to work with.

Heat exchange Calorimeters Experimentals

Heat/Energy balance

The enthalpy variation consists in the change in internal energy ΔU plus the work L needed to change the system's volume V:

$$\Delta H = \Delta U + L = C_{p} \cdot \Delta T + V \cdot \Delta P = \delta Q + V \cdot \Delta P$$

where C_p is the heat capacity at constant pressure, ΔT and ΔP are temperature and pressure variation and $\delta Q = C_p \cdot \Delta T$. At constant pressure $\Delta P = 0$ and $\Delta H = \delta Q$.

Brown, M. E. Handbook of Thermal Analysis and Calorimetry; Elsevier, Amsterdam, The Netherlands, 2003; Vol.1

Heat exchange Calorimeters Experimentals

Outline

Heat exchange Calorimeters Experimentals

commercial devices

It is possible to find a number of commercial calorimeters, specialized to study solid or liquid samples, phase transitions

The main question in our case is, essentially, what are the constraints imposed on sample dimensions and by instrument sensitivity.

Usual requirements of commercial devices are:

- sample mass in the mg range (10-100 mg);
- sensitivity in energy detection (E ≥ 1 mJ)

What does it mean in our system? If we want to detect 10 mg of H_2 on a MLG, considering DOE prescriptions (5.5 wt.%) and the specific surface area of grahene ($\sim 2600m^2/g$) we will need $\sim 450m^2$ of MLG

Heat exchange Calorimeters Experimentals

summarizing

Commercial instruments do not meet a reasonable sample dimension

Heat exchange Calorimeters Experimentals

Ultra-sensitive thermometry

Very sensitive thermometric techniques have been successfully developed to measure milliKelvin temperature differences in nano-scale devices, mainly in thermoelectric ones.

- quantum dots based thermometers
- Shot noise thermometers (SNT)
- Normal metal-Insulator- Superconductor (NIS) thermometers
- Coulomb Blockade Thermometers (CBT)

Such thermometers, however, can operate only at Low Temperature below a few Kelvin. SNT thermometer works at higher temperature too, but sensitivity degrade down to $\sim 0.5K$ at room temperature.

Mavalankar, A.; et al., Applied Physics Letters 2013, 103, 133116.

Heat exchange Calorimeters Experimentals

Outline

Heat exchange Calorimeters Experimentals

Sample & holder

Our sample must be loaded on a STM sample holder which limit the maximum physical dimension to about $6x6mm^2$. Our gold thermometer has dimensions $\sim 5.5x5.5mm^2$.

Heat exchange Calorimeters Experimentals

limiting scenarios

In our experiment we can consider two limiting situations which give an upper and lower limit to the temperature increase we will measure during hydrogenation of our sample.

- (1) negligible thermal losses (silica acts as a perfect thermal insulator)
- (2) sample fully thermalized (silica acts as a perfect thermal conductor) In both cases we will neglect the heat capacity of Ti-functionalized MLG and an hydrogen uptake of $\sim 10^{-10}$ moles will be assumed.

Heat exchange Calorimeters Experimentals

scenario 1

scenario 1

In this case the Ti-functionalized MLG, gold film, Ti underneath are completely decoupled from the substrate. So all the energy released during hydrogen adsorption heat up these layers.

$$\Delta T = \frac{E}{C_{Au} + C_{Ti}} \sim 5K$$

where
$$C_{Au} = A \cdot d \cdot \rho_{Au} \cdot c_{Au} = 30.3 mm^2 \cdot 20 \cdot 10^{-6} mm \cdot 19.3 \cdot 10^{-3} g \cdot 0.129 J/(K \cdot g) = (1.51 \pm 0.02) \cdot 10^{-6} J/K$$
 and, similarly $C_{Ti} = (0.36 \pm 0.01) \cdot 10^{-6} J/K$.

we can neglect $C_{graphene} \sim 10^{-8}$ J/K and the contribution of the Ti deposited on the MLG (a few ML) is negligible ($C \sim 5 \cdot 10^{-8}$ J/K)

Heat exchange Calorimeters Experimentals

scenario 1

scenario 1

In this case the Ti-functionalized MLG, gold film, Ti underneath are completely decoupled from the substrate. So all the energy released during hydrogen adsorption heat up these layers.

$$\Delta T = \frac{E}{C_{Au} + C_{Ti}} \sim 5K$$

where
$$C_{Au} = A \cdot d \cdot \rho_{Au} \cdot c_{Au} = 30.3 mm^2 \cdot 20 \cdot 10^{-6} mm \cdot 19.3 \cdot 10^{-3} g \cdot 0.129 J/(K \cdot g) = (1.51 \pm 0.02) \cdot 10^{-6} J/K$$
 and, similarly $C_{Ti} = (0.36 \pm 0.01) \cdot 10^{-6} J/K$.

we can neglect $C_{graphene} \sim 10^{-8}$ J/K and the contribution of the Ti deposited on the MLG (a few ML) is negligible $(C \sim 5 \cdot 10^{-8}$ J/K)

Heat exchange Calorimeters Experimentals

scenario 2

scenario 2

In this case all the sample thermalize. So all the energy released during hydrogen adsorption heat up the entire sample.

$$\Delta T = rac{E}{C_{Au}+C_{Ti}+C_{SiO_2}+C_{Si}} \sim 0.7 mK$$

Thermometer calibration Sample characterization Ti source calibration

setup scheme

Thermometer calibration Sample characterization Ti source calibration

Thermometer calibration

All experiments are performed in Ultra-High Vacuum (UHV) environment (base pressure $\sim 10^{-10}$ mbar). Temperature is measured via the gold film resistance, following the linear relation:

 $R(T) = R_0 [1 + \alpha (T - T_0)]$ where R_0 is the resistance at the reference temperature T_0 (room temperature in our case) and α is the resistance temperature coefficient.

Thermometer calibration Sample characterization Ti source calibration

Outline

3

Enthalpy of process evaluation

Thermometer calibration Sample characterization Ti source calibration

repeteability

Figure: Resistance variation vs. temperature for five different calibration runs on the same sample (Au with MLG). Between mounting 1_a and 1_b the sample has been stored for several days in UHV.

Thermometer calibration Sample characterization Ti source calibration

Thermometer characterization

Sample	$R_0(\Omega)$	$\alpha_i (\mathrm{K}^{-1})$	$\alpha_f (\mathrm{K}^{-1})$	$\rho_i \left(\Omega m \right)$	$\rho_f (\Omega m)$
1	2.96	$(2.8\pm 0.2)\cdot 10^{-3}$	-	$(3.0\pm0.4)\cdot10^{-8}$	-
2	3.57	$(2.4\pm0.3)\cdot10^{-3}$	-	$(3.6\pm0.5)\cdot10^{-8}$	-
G1	2.95	$(2.6 \pm 0.2) \cdot 10^{-3}$	$(2.0\pm0.4)\cdot10^{-3}$	$(2.9 \pm 0.4) \cdot 10^{-8}$	$(3.5\pm0.4)\cdot10^{-8}$
G2	2.79	$(2.8\pm0.5)\cdot10^{-3}$	$(1.7\pm0.3)\cdot10^{-3}$	$(3.2\pm0.4)\cdot10^{-8}$	$(3.6\pm0.5)\cdot10^{-8}$
G3	3.31	$(1.7\pm0.2)\cdot10^{-3}$	$(1.8\pm0.2)\cdot10^{-3}$	$(3.7\pm0.5)\cdot10^{-8}$	$(3.6\pm0.5)\cdot10^{-8}$
average (with G3)		$(2.4\pm0.4)\cdot10^{-3}$	$(1.8\pm 0.3)\cdot 10^{-3}$	$(3.2\pm 0.4)\cdot 10^{-8}$	$(3.6\pm0.4)\cdot10^{-8}$
(without G3)		$(2.7\pm 0.1)\cdot 10^{-3}$			
literature (bulk) ¹		$3.4\cdot10^{-3}$		$2.44\cdot 10^{-8}$	

Table: Comparison of temperature coefficients of resistance α and electrical resistivity ρ . Samples 1 and 2 refer to gold thermometer only, while samples G1-3 refer to gold thermometer plus graphene. α_i and ρ_i are measured for only Au thermometer with or without MLG, while α_f and ρ_f are measured for the Au thermometer with Ti-MLG.

¹Serway, R.; Jewett, J., 5th ed.; Brooks Cole, Pacific Grove, USA, 2012

Thermometer calibration Sample characterization Ti source calibration

Outline

Thermometer calibration Sample characterization Ti source calibration

Graphene transfer

We used a standard PMMA–assisted transfer process for transferring the graphene onto gold–coated SiO₂/Si substrates.

- graphene/Cu cleaning
- spin coating with PMMA
- removing back layer of graphene
- Cu etching
- PMMA/Gr rinse and transfer on substrates
- PMMA remove, rinse and dry

Gabriela Borin Barin, et al., Carbon 2015, 84, 82-90.

energy exchange at nano-scale

S. Veronesi

Thermometer calibration Sample characterization Ti source calibration

Raman Spectroscopy

Figure: Raman spectrum of the graphene used in our devices, showing the expected G and 2D peaks for monolayer graphene.

Figure: (a) Raman intensity ratio map: each pixel gives the ratio between the intensity of the 2D peak vs the G peak. (b) Raman map showing the FWHM (in cm^{-1}) of the 2D peak.

Thermometer calibration Sample characterization Ti source calibration

STM analysis

Figure: (a) STM image of the Au layer. Image parameters: V=1.0 V, I=1.0 nA, average RMS roughness: (0.8 ± 0.2) nm. (b) STM image of the MLG transferred on the Au layer. Image parameters: V=0.6 V, I=0.5 nA, average RMS roughness: (1.7 ± 0.5) nm. The inset shows a cross-sectional plot of a wrinkle taken along the blue line in the STM image. (c) STM image of 12.4 ML Ti evaporated on MLG. Image parameters: V=0.2 V, I=0.09 nA, average RMS roughness: (2.0 ± 0.5) nm. All images 500 × 500 nm².

Thermometer calibration Sample characterization **Ti source calibration**

Outline

Thermometer calibration Sample characterization Ti source calibration

STM analysis

Figure: STM images (100 \times 100 nm²) of Ti deposited on SiC. (a) 10 s. (b) 20 s. (c) 40 s. Parameters for all images: V = 0.3 V, I = 0.2 nA.

Thermometer calibration Sample characterization Ti source calibration

Source Calibration

Deposition time	Area coverage	Ti deposited
10s	$(8.2 \pm 1.6)\%$	$(0.24\pm0.03)\text{ML}$
20s	$(14 \pm 3)\%$	(0.45 ± 0.05) ML
40s	$(25\pm2)\%$	$(0.89\pm0.10) \text{ML}$

Table: Area coverage and amount of Ti deposited.

Figure: Fit of the calibration data taken from Table.

following the method described in: T. Mashoff, M. Takamura, S. Tanabe, H. Hibino, F. Beltram and S. Heun, Applied Physics Letters, 2013, **103**, 013903.

Thermometer calibration Sample characterization **Ti source calibration**

Thermometer + MLG + Ti characterization

Ramp	α_f (K ⁻¹)
1	$(1.57\pm0.01)\cdot10^{-3}$
2	$(1.56 \pm 0.01) \cdot 10^{-3}$
3	$(1.58 \pm 0.02) \cdot 10^{-3}$
4	$(1.64 \pm 0.02) \cdot 10^{-3}$
5	$(1.63 \pm 0.02) \cdot 10^{-3}$
6	$(1.72\pm0.02)\cdot10^{-3}$

Table: Temperature coefficient of resistance (α_f) for each of the heating ramps presented in Figure. The average value is $\alpha_f = (1.62 \pm 0.05) \cdot 10^{-3} \text{ K}^{-1}$.

Figure: Resistance variation ($\Delta R = R(T) - R_0$) vs. temperature for six different heating experiments on the same Au+Ti–MLG sensor.

S. Veronesi

<mark>Hydrogen uptake</mark> Enthalpy of process evaluatior

Outline

Hydrogen uptake Enthalpy of process evaluation

hydrogenation sequence

All samples' Hydrogenation experiments follow the same protocol. The main step of the process can be summarized in:

- Sensor resistance variation during Ti deposition (~ 600s) on MLG;
- Sensor temperature variation during exposure of the Ti film to D₂;
- TDS spectrum of Ti–MLG sample after 5 min of D_2 exposure at $P_{D_2} = 1.0 \cdot 10^{-7}$ mbar

<mark>Hydrogen uptake</mark> Enthalpy of process evaluatior

Calorimetry during hydrogenation

(a) Ti deposition (for 539 s, 12.4 ML of Ti) on MLG. (b)Exposure of the Ti film to D₂(red line: exponential fit of the thermalization background). (c) Thermalization background subtracted. A T = 0.065 K is clearly detected. (d) TDS spectrum of Ti-MLG (Red line: smoothing).

S. Veronesi

H<mark>ydrogen uptake</mark> Enthalpy of process evaluatior

TDS analysis

H<mark>ydrogen uptake</mark> Enthalpy of process evaluatior

TDS analysis

$$p V = F S = n R T$$

 $S \approx 300 \text{ L/s}$ \downarrow $n(D_2) \rightarrow 1.71 \cdot 10^{-10} \text{ mol}$

$H_r = n N_A E_b = (21.8 \pm 1.3) \,\mu\text{J}$

Hydrogen uptake Enthalpy of process evaluation

Outline

Hydrogen uptake Enthalpy of process evaluation

Thermal model

We can describe the system with a simple thermal model in which the thermometer is heated by the absorption of a thermal power $P(t) = \delta H_r / \delta t$ while at the same time it releases energy by heat losses towards the substrate. These two contributions are related by the following equation:

$$\delta H_r / \delta t = C \cdot \delta \Delta T(t) / \delta t + \lambda \cdot \Delta T(t)$$

The sensor heat capacity *C* and the thermal exchange coefficient λ must be evaluated.

M. Cassettari, F. Papucci, G. Salvetti, E.tombari, S.Veronesi, G. Johari, "Simultaneous measurements of enthalpy and heat capacity of a thermosetting polymer during the curing process" Review of Scientific Instruments 1993, **64**, 1076-1080

Enthalpy of process evaluation

COMSOL simulation of Temperature distribution

Figure: (a) Temperature distribution at t = 1 ns when the temperature jump of 2 K has just been applied to the topmost layer of the stack. All other parts of the stack are still at 303 K. (b) Temperature distribution at t = 0.1 μ s.

Hydrogen uptake Enthalpy of process evaluation

Heat capacity evaluation

We can describe the system with a simple thermal model in which the thermometer is heated by the absorption of a thermal power $P(t) = \delta H_r / \delta t$ while at the same time it releases energy by heat losses towards the substrate. These two contributions are related by the following equation:

 $\delta H_r / \delta t = C \cdot \delta \Delta T(t) / \delta t + \lambda \cdot \Delta T(t)$

The sensor heat capacity *C* include the graphene layer, the Au thermometer, and the SiO₂ layer underneath. We obtain the total heat capacity $C = (15.0 \pm 0.2) \cdot 10^{-6}$ J/K.

Hydrogen uptake Enthalpy of process evaluation

Heat losses evaluation

We expect that three time scales will be involved:

- a short one, related to the sample and thermometer thermalization
- an intermediate one, related to the substrate thermalization
- a long one, related to the thermalization towards the environment (sample holder).

To experimentally verify, we heated the sample for a short time with a known thermal power, then we switched off the heating and monitored the cooling process. The cooling curve can be described as the sum of three exponential decays with very distinct time scales, listed in the Table.

Decay time	Exp. value (s)
$ au_1$	(2.9 ± 0.6)
$ au_2$	(47 ± 2)
	(475 ± 5)

 Table: Characteristic decay times obtained from the fit of the cooling data.

This allows us to calculate λ as $\lambda = C/\tau_1 = (5.1 \pm 1.1) \cdot 10^{-6}$ W/K.

Hydrogen uptake Enthalpy of process evaluation

Heat losses evaluation

We expect that three time scales will be involved:

- a short one, related to the sample and thermometer thermalization
- an intermediate one, related to the substrate thermalization
- a long one, related to the thermalization towards the environment (sample holder).

To experimentally verify, we heated the sample for a short time with a known thermal power, then we switched off the heating and monitored the cooling process. The cooling curve can be described as the sum of three exponential decays with very distinct time scales, listed in the Table.

Decay time	Exp. value (s)
$ au_1$	$(\textbf{2.9}\pm\textbf{0.6})$
$ au_2$	(47 ± 2)
$ au_{3}$	(475 ± 5)

Table: Characteristic decay times obtained from the fit of the cooling data.

This allows us to calculate λ as $\lambda = C/\tau_1 = (5.1 \pm 1.1) \cdot 10^{-6}$ W/K.

Hydrogen uptake Enthalpy of process evaluation

Enthalpy calculation I

Figure: (a) Rising part of $\Delta T(t)$ (smoothed) at the beginning of D₂ exposure of the Ti–MLG (same data as Figure 36(c)). (b) $\delta H_r/\delta t$ for the same measurement (the area integration is shown in light blue).

Hydrogen uptake Enthalpy of process evaluation

Enthalpy calculation II

Experimental results

From the equation:

 $\delta H_r / \delta t = C \cdot \delta \Delta T(t) / \delta t + \lambda \cdot \Delta T(t)$

performing a point-by-point derivative of the measured $\Delta(T)$ curve and a point-by-point integration of $\delta H_r/\delta t$, with the experimental parameters

•
$$au = (2.9 \pm 0.6)s$$

- sample heat capacity $C = (15.0 \pm 0.2) \cdot 10^{-6} J/K$
- Heat exchange coefficient $\lambda = (5.1 \pm 1.1) \cdot 10^{-6} W/K$

The enthalpy release during the D_2 adsorption results to be $H_r = (23.4 \pm 4.7) \mu J$

L. Basta, S. Veronesi, Y. Murata, Z. Dubois, N. Mishra, F. Fabbri, C. Coletti, S. Heun, "A sensitive calorimetric technique to study energy (heat) exchange at the nano-scale", submitted to Nanoscale

Hydrogen uptake Enthalpy of process evaluation

Final remarks

The enthalpy release due to hydrogen adsorption on a Ti-functionalized MLG has been measure in two different ways:

- TDS which is a consolidated technique
- during H adsorption via calorimetry, which is a new developed technique

TDS results

- Binding energy (1.32 ± 0.07) eV/molecule
- Desorbed D_2 molecules $n = (1.03 \pm 0.01) \cdot 10^{14}$ corresponding to $(1.71 \pm 0.01) \cdot 10^{-10}$ moles
- released enthalpy $H_r = n \cdot E_d = (21.8 \pm 1.3) \mu J$

Calorimetry results

- sample heat capacity $C = (15.0 \pm 0.2) \cdot 10^{-6} J/K$
- Heat exchange coefficient $\lambda = (5.1 \pm 1.1) \cdot 10^{-6} W/K$
- released enthalpy $H_r = (23.4 \pm 4.7) \mu J$

Hydrogen uptake Enthalpy of process evaluation

Conclusions

First direct measurement of enthalpy release during Hydrogen adsorption process

- resistance readout sensitivity $\sim 0.03 m\Omega$
- temperature variation sensitivity 10 mK
- H_2 detected during adsorption ~ 0.2*ng* or $(1.71 \pm 0.01) \cdot 10^{-10}$ moles
- corresponding to a released enthalpy $H_r = (23.4 \pm 4.7) \mu J$
- in good agreement with TDS evaluation $H_r = n \cdot E_d = (21.8 \pm 1.3) \mu J$
- advantages: calorimetric evaluation is direct and do not need H₂ desorption, while TDS need the desorption of the loaded H₂

Hydrogen uptake Enthalpy of process evaluation

Outlook

An issue to solve is relative to surface roughness. Atomically speaking Gold thermometer has a rough surface which do not allow atomic resolution with STM. Mica allow surface reconstruction of Gold, solving this problem.

Hydrogen uptake Enthalpy of process evaluation

Outlook

new sensor substrate (Mica) allowing better performances

- possibility to obtain gold re-crystallization in situ
- atomically flat surface to fully exploit STM potentiality
- application to sensors
- application to flexible detectors

Hydrogen uptake Enthalpy of process evaluation

- new sensor substrate (Mica) allowing better performances
- possibility to obtain gold re-crystallization in situ
- atomically flat surface to fully exploit STM potentiality
- application to sensors
- application to flexible detectors

Hydrogen uptake Enthalpy of process evaluation

- new sensor substrate (Mica) allowing better performances
- possibility to obtain gold re-crystallization in situ
- atomically flat surface to fully exploit STM potentiality
- application to sensors
- application to flexible detectors

Hydrogen uptake Enthalpy of process evaluation

- new sensor substrate (Mica) allowing better performances
- possibility to obtain gold re-crystallization in situ
- atomically flat surface to fully exploit STM potentiality
- application to sensors
- application to flexible detectors

Hydrogen uptake Enthalpy of process evaluation

- new sensor substrate (Mica) allowing better performances
- possibility to obtain gold re-crystallization in situ
- atomically flat surface to fully exploit STM potentiality
- application to sensors
- application to flexible detectors

Hydrogen uptake Enthalpy of process evaluatior

People

Hydrogen uptake Enthalpy of process evaluation

thanks

Thank you for your attention

<ロ><四><日><日><日><日><日><日><日><日><日><日><日><日><10<</p>