Introduction Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

An atomically flat, single-crystal, gold film thermometer on mica to study energy (heat) exchange at the nano-scale

<u>S. Veronesi¹</u>, L. Basta¹, T. Papa¹, Y. Murata¹, Z. Dubois¹, N. Mishra^{2,3}, F. Fabbri^{2,3}, C. Coletti^{2,3}, and S. Heun¹

¹ NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy

² Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy

³ Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Introduction Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Outline

Introduction Nano-scale calorimetry

- Thermometer (first prototype)
- > Nano-scale calorimetry
- > TDS analysis
- > Comments

Au thermometer on mica: fabrication and performances

- > Mica
- > Au(111) herringbone reconstruction
- > Thermometer Fabrication
- > Thermometer Calibration

Conclusions and Outlook

Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Motivation

A detailed knowledge of the energy exchange in the fast growing family of micro and nanosystems could allow to obtain valuable information about the chemistry and physics at the nanoscale. A calorimetric evaluation of tiny samples would represent a precious source of information in developing

- Sensors
- Catalyzers
- Molecules of pharmaceutical interest
- H-storage devices

Even if performance is improving with time, commercial calorimeters are still far from the access to nano-scale samples.

Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Calorimetry

Working at constant pressure allows a simplified relation between Enthalpy variation ΔH and heat exchanged δQ :

$$\Delta H = \Delta U + L = C_p \cdot \Delta T + V \cdot \Delta P = \delta Q + V \cdot \Delta P$$

In case of exothermic or endothermic reactions (with time-independent C_p):

$$\frac{\delta H_r}{\delta t} = C_p \cdot \frac{\delta \Delta T}{\delta t}$$

IDEAL CASE

Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Calorimetry

Working at constant pressure allows a simplified relation between Enthalpy variation ΔH and heat exchanged δQ :

$$\Delta H = \Delta U + L = C_p \cdot \Delta T + V \cdot \Delta P = \delta Q + V \cdot \Delta P$$

In case of exothermic or endothermic reactions (with time-independent C_p):

$$\frac{\delta H_r}{\delta t} = C_p \cdot \frac{\delta \Delta T}{\delta t} + \lambda \cdot \Delta T \qquad \text{REAL CASE}$$

Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Commercial calorimeters

Usual requirements of commercial devices:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~mJ)

Sensitive thermometric techniques measure milli-Kelvin temperature differences in nano-scale devices. But...they can operate only at low temperatures (below a few Kelvin).

What does it mean in our system? If we want to detect **10 mg** of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene (~2600 m²/g) we will need ~**450** m² of MLG

in oth Boyel The

Nano-scale calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

> Our original calorimetric technique has been tested on a Ti-functionalized MLG sample, which is a system well investigated. Overall sample mass is **10 ng**, 6 order of magnitude lower than commercial device request.

IntroductionThermometer (first prototype)Au thermometer on mica: fabrication and performances
Conclusions and OutlookTDS analysis
Comments

First prototype of the gold film thermometer

The electrical resistance of the Au film increases with temperature, following a linear relation:

$$R(T) = R_0 [1 + \alpha (T - T_0)]$$

The temperature increase of the sensor causes a resistance increase of the gold layer, that can be measured with a Wheatstone Bridge cascaded to a high quality PreAmplifier.

 \geq

 \geq

	Ti
	mono-layer graphene
	Au, 20 nm
	Ti, 5 nm
	SiO2, 280 nm
	Si, 300 µm

EXPERIMENTAL STEPS:

- > Calibration (heating cycles $\Longrightarrow \alpha$)
- Graphene transfer
 - Ti functionalization in situ (6.5 ML)
 - D_2 exposure (5 minutes, 1.0×10^{-7} mbar)
 - Final calibration

IntroductionThermometer (first prototype)Au thermometer on mica: fabrication and performances
Conclusions and OutlookTDS analysis
Comments

First prototype of the gold film thermometer

The electrical resistance of the Au film increases with temperature, following a linear relation:

$$R(T) = R_0 [1 + \alpha (T - T_0)]$$

The temperature increase of the sensor causes a resistance increase of the gold layer, that can be measured with a Wheatstone Bridge cascaded to a high quality PreAmplifier.

	Ti
	mono-layer graphene
	Au, 20 nm
	Ti, 5 nm
	SiO2, 280 nm
	Si, 300 µm

The enthalpy release due to hydrogen adsorption on a Ti-functionalized MLG has been measured in two different ways:

- during the hydrogen adsorption, via calorimetry
- after the hydrogen adsorption, via Thermal Desorption Spectroscopy (TDS)

Introduction Thermometer (first prototype) **Nano-scale Calorimetry** Au thermometer on mica: fabrication and performances **TDS analysis Conclusions and Outlook Comments**

Experimental setup

Introduction Nano-scale Calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Calorimetric analysis

THE THERMAL MODEL

Thermal power $P(t) = \delta H_r / \delta t$

$$\frac{\delta H_r}{\delta t} = C_{sensor} \cdot \frac{\delta \Delta T(t)}{\delta t} + \lambda \cdot \Delta T(t)$$

with $C_{sensor} = C_{MLG} + C_{Au} + C_{Ti} + C_{SiO2}$ [1]

- > point-by-point derivative of the measured ∆T(t) curve
- > point-by-point integration of $\frac{\delta H_r}{\delta t}$

 $H_r\simeq (23\pm5)\,\mu J$

Thermal Desorption Spectroscopy (TDS) analysis

By heating the sample at constant rate, the adsorbed species are removed.

- > TDS Spectrum vs Temperature \Longrightarrow binding energy $E_b = E_d$
- > TDS Spectrum vs Time \Longrightarrow desorbed moles *n*.

Thermal Desorption Spectroscopy (TDS) analysis

By heating the sample at constant rate, the adsorbed species are removed.

- > TDS Spectrum vs Temperature \Longrightarrow binding energy $E_b = E_d$
- > TDS Spectrum vs Time \Longrightarrow desorbed moles *n*.

Thermal Desorption Spectroscopy (TDS) analysis

By heating the sample at constant rate, the adsorbed species are removed.

- > TDS Spectrum vs Temperature \Longrightarrow binding energy $E_b = E_d$
- > TDS Spectrum vs Time \Longrightarrow desorbed moles *n*.

The enthalpy release can be calculated from the binding energy and the amount of desorbed moles:

 $H_r = nN_A E_b \simeq (22 \pm 1) \,\mu J$

Performances

First direct measurement of the enthalpy released during a hydrogen adsorption process

- > resistance variation sensitivity of $\sim 0.03 \text{ m}\Omega$
- > temperature variation sensitivity ~ 10 mK
- > D_2 detected during adsorption ~ **0.2 ng** or 10^{-10} mol
- > corresponding to a released enthalpy $H_r \simeq (23 \pm 5) \mu J$
- > in good agreement with TDS evaluation $H_r \simeq (22 \pm 1) \mu J$
- main advantage: the calorimetric evaluation is direct and does not need the hydrogen desorption, while TDS needs the desorption of the loaded hydrogen

Improvements

- Thermometer surface is rough (atomically speaking)
- > Si thermal conductivity is relatively high

These are the two main directions to improve thermometer performances.

IntroductionMicaNano-scale CalorimetryAu(111) herringbone reconstructionAu thermometer on mica: fabrication and performancesThermometer FabricationConclusions and OutlookThermometer Calibration

New substrate: Muscovite Mica - KAl₂(AlSi₃)O₁₀(OH)₂

13/21

Introduction Nano-scale Calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Mica Au(111) herringbone reconstruction Thermometer Fabrication Thermometer Calibration

Au(111) herringbone reconstruction

Introduction Nano-scale Calorimetry Au thermometer on mica: fabrication and performances Conclusions and Outlook

Mica Au(111) herringbone reconstruction Thermometer Fabrication Thermometer Calibration

Thermometer Fabrication - overview

- Scotch-tape freshly cleaved substrate
- ➤ Loading in metal evaporator
- Substrate drying overnight at 200°C
- Gold deposition at room temperature, deposition rate of 1 Å/s
- > Cutting in ~ $5x5 \text{ mm}^2 \text{ samples}$

IntroductionMicaNano-scale CalorimetryAu(111) herringhAu thermometer on mica: fabrication and performances
Conclusions and OutlookThermometer Ca

Au(111) herringbone reconstruction Thermometer Fabrication Thermometer Calibration

M5/M6-series: Au/mica

Several heating ramps have been performed in the UHV chamber, with a heating rate of 1°C/minute.

16/21

IntroductionMicaNano-scale CalorimetryAu(111) herringbone reconstructionAu thermometer on mica: fabrication and performancesThermometer FabricationConclusions and OutlookThermometer Calibration

M5/M6-series: Au/mica

The annealing procedure up to 200 °C, performed in the UHV chamber, allows to obtain single crystalline films, [111] oriented.

Low Energy Electron TO SUM UP...

The STM measurements have demonstrated that the gold film thermometer is stable up to 200 °C.

The surface recostruction obtained with the M5/M6 samples after the annealing up to 200°C with a heating rate of 1°C/minute ensures a perfect recrystallization of the gold film, with flat and wide terraces.

IntroductionMicaNano-scale CalorimetryAu(111) herriAu thermometer on mica: fabrication and performances
Conclusions and OutlookThermomete

Mica Au(111) herringbone reconstruction Thermometer Fabrication Thermometer Calibration

Resistance vs Temperature

$$R(T) = R_0 [1 + \alpha (T - T_0)]$$

resistance - temperature coefficient α (via linear fitting)

$$\alpha_{M5} = (3.1 \pm 0.3) \times 10^{-3} \text{ °C}^{-1}$$

$$\alpha_{M6} = (2.8 \pm 0.1) \times 10^{-3} \text{ °C}^{-1}$$

Nanoinnovation 2018An atomically flat gold film thermometer on mica for calorimetric applications

IntroductionMicaNano-scale CalorimetryAu(111) herringbone reconstructionAu thermometer on mica: fabrication and performances
Conclusions and OutlookThermometer FabricationThermometer CalibrationThermometer Calibration

Heat transfer calibration – comparison

19/21

Nanoinnovation 2018 An atomically flat gold film thermometer on mica for calorimetric applications

State of The Art Au thermometer on mica Thermometer Application: atomic hydrogen adsorption Conclusions and Outlook

Conclusions

> Improvement of gold film thermometers in terms of sensitivity: $\lambda_{mica} \sim 2 \times 10^{-7} \text{ W/K vs } \lambda_{Si} \sim 5 \times 10^{-6} \text{ W/K}$

Detailed study of the gold surface re-crystallization allowed by the mica substrate

> The possibility to fully exploit the STM potentiality, due to the atomically flat thermometer surface

State of The Art Au thermometer on mica Thermometer Application: atomic hydrogen adsorption Conclusions and Outlook

Outlook

- > The STM measurements have demonstrated that the gold film thermometers are stable up to 200 °C. Stability range could be improved with a Ti layer.
- Simultaneous investigation of energy transfer mechanisms and surface physics on the same physical support.
- > The atomically flat thermometer would allow a detailed study of 2D materials utilising STM and LEED probes.
- > Mica properties make this sensors suitable to have a remarkable impact on flexible electronics.

Thank you for your attention!

