

Surface functionalization of exfoliated black phosphorus with transition metal nanoparticles: enhancement of ambient stability and selectivity in chemical processes

Maria Caporali CNR ICCOM, Florence (ITALY)

Anisotropic structure of black phosphorus

Armchair (x-axis)

Anisotropic structure of black phosphorus

Zig-zag (y-axis)

Physical properties of few-layer bP

 \checkmark *p*-type semiconductor, with a thickness-depending direct band gap (0.3-2.0 eV)

 \checkmark The band gap can be modulated either applying an electrical field or by strain.

Applications of black phosphorus

Synthesis of black phosphorus

Liquid-phase exfoliation

M. Serrano-Ruiz, M. Caporali, M. Peruzzini *et al.*, *Adv. Mat. Interfaces* **2016**, 3, 1500441.

2D black phosphorus: characterization

Why is the chemistry of 2D bP important?

- ✓ improve the **processability** and the **solubility** of the nanomaterial;
- ✓ contribute to its **stabilization** in ambient conditions;
- ✓ provide the opportunity for modulations and fine tuning of the physical properties;
- ✓ serve as a basis for the development of **devices**.

Nat. Chem. 2016, 8, 598.

Angew. Chem. Int. Ed. 2017, 56, 9891.

Surface functionalization of 2D bP with Ni NPs

M. Caporali, M. Serrano Ruiz, M. Peruzzini et al. Chem. Commun. 2017, 53, 10946.

Raman

High Resolution XPS

Atomic Force Microscopy

Ambient instability of 2D bP

The degradation is influenced by the following key-factors:

Passivation strategies

The solution to avoid degradation is capping 2D bP to minimize its interaction with the ambient:

- ✓ passivation with Al₂O₃, SiO₂, PMMA, ionic liquis, AgNO₃;
- ✓ surface coordination and covalent functionalization;
- \checkmark sandwiched 2D bP heterostructures with graphene, *h*-BN.

Ambient degradation of 2D bP

fresh sample

aged 1 week

aged 2 weeks

Ambient degradation of Ni/2D bP

fresh sample

aged 1 week

Ambient degradation of Ni/2D bP

aged 1 week

aged 18 days

aged 2 months

aged 3 months

aged 7 months

Raman analysis of aging process

XPS after aging 18 days

Thickness of P-oxide layer, d

$$d = \lambda \ln (I_{oxide} / I_{bP} + 1)$$

 λ = electron mean free path I_{oxide} , I_{bP} = area underneath curve

d = 13.9 Å P-oxide in bP d = 6.2 Å P-oxide in Ni/bP

Elettra Sincrotrone Trieste

Semihydrogenation of phenylacetylene

	Ni/2D BP 10 bar H ₂ THF/Toluene (3:1), 80		+	
Entry	Conversion (%)	Selectivity to styrene (%)	S/cat	Т (°С)
	100.0	79.6	56.0	90

Ni NPs	100.0	78.6	56.0	80
2D BP	0.0	-	-	80
Ni/2D BP	93.2	92.8	56.0	80
Ni/Al ₂ O ₃	99.6	0.7 ^a	16.5	100
Ni/MgO	98.5	36.0 ^b	15.0	50
Ni@C	99.8	59.6 ^c	-	100-150

^aACS Catal. **2015**, *5*, 5756: 2 hours, 3 bar H₂

^b Chem. Cat. Chem. **2014**, 6, 824: 5 bar H₂, 2 h

^c Carbon 2014, 74, 291: flow bed reactor.

Recycling Ni/2D BP

ICP-AES: no leaching of nickel

In-situ growth of Pd NPs on 2D bP

500 m

PXRD and Raman of Pd/2D bP

 A_{2g}

 A_{2g}

500

Si

550

BP

Pd/BP

600

Selective reduction of nitroarenes to anilines

Catalyst	Substrate	Conversion (%)	Selectivity (%)
Pd/Zr- phosphonate*	1-chloro-3- nitrobenzene	99.7	84.0
Pd/C (ketjen black)	1-chloro-3- nitrobenzene	100.0	64.0
Pd/bP	1-chloro-3- nitrobenzene	98.0	99.0
Pd/bP	1-chloro-2- nitrobenzene	99.5	97.3
Pd/bP	4-nitrobenzaldehyde	99.5	100.0
Pd/bP	1-fluoro-3- nitrobenzene	99.9	100.0

ICP-AES: no leaching of palladium

*M. Caporali, F. Liguori et al. ACS Appl. Nano Mater. 2018, 1, 1750-1757.

Summary

- Ni/2D bP catalyzed successfully the semihydrogenation of phenylacetylene and showed high selectivity to styrene.
- > An improved ambient stability was observed in presence of Ni NPs.
- Pd NPs were grown onto 2D bP and the resulting catalyst showed remarkable selectivity in the reduction of halo-arenes to halo-anilines.

Acknowledgements

CNR ICCOM Florence

CEME (electron microscopy)

Alessandro Lavacchi, M. Cristina Salvatici

Maurizio Peruzzini

Andrea lenco

Gabriele Manca

Matteo Vanni

erc

European Research Council Established by the European Commission

M. Serrano Ruiz

CNR NANO (Pisa)

Stefan Heun Francesca Telesio

CNR IMM (Catania)

Giuseppe Nicotra Corrado Spinella

CNR IOM (Trieste)

Alberto Verdini

PHOSFUN "Phosphorene functionalization: a new platform for advanced multifunctional materials", ERC-Advanced Grant to M. Peruzzini.

E-MRS, European Materials Research Society, Spring Meeting

27-31 May 2019, Nice, France.

28 symposia organized into 6 topical clusters:

- Materials for Energy
- Bio- and Soft Materials
- Nano-functional Materials
- 2 Dimensional Materials
- Materials, Electronics and Photonics
- Modelling and Characterizations

Deadline for abstract: 15 January 2019.

Symposium T

2D semiconductors: applications and perspectives