Sensing energy (heat) exchange at the nano-scale during H₂-uptake on Ti-functionalized graphene

S. Veronesi,¹ L. Basta,¹ Y. Murata,¹ Z. Dubois,¹ N. Mishra,^{2,3} F. Fabbri,^{2,3} C. Coletti^{2,3} and S. Heun¹

¹NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silestro 12, 56127 Pisa, Italy
²Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy
³Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Bologna, Materials 2018, 22-26 October

Outline

S. Veronesi Calorimetry at nano-scale

Motivation

A detailed knowledge of the energy exchange in the fast growing family of micro and nano-systems could allow to obtain valuable information about the chemistry and physics at the nano-scale. A calorimetric evaluation of tiny samples would represent a precious source of information in developing

- Sensors
- Catalyzers
- Molecules of pharmaceutical interest
- H-Storage devices

Even if performance is improving with time, commercial calorimeters are still far from the access to nano-scale samples.

Motivation

A detailed knowledge of the energy exchange in the fast growing family of micro and nano-systems could allow to obtain valuable information about the chemistry and physics at the nano-scale. A calorimetric evaluation of tiny samples would represent a precious source of information in developing

- Sensors
- Catalyzers
- Molecules of pharmaceutical interest
- H-Storage devices

Even if performance is improving with time, commercial calorimeters are still far from the access to nano-scale samples.

Calorimetry Setups Samples characterization

Outline

S. Veronesi Calorimetry at nano-scale

Calorimetry Setups Samples characterization

commercial devices

Usually commercial devices require:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature differences in devices at the nano-scale. But, they can operate only at low temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene ($\sim 2600 m^2/g$) we will need $\sim 450 m^2$ of MLG.

Calorimetry Setups Samples characterization

commercial devices

Usually commercial devices require:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature differences in devices at the nano-scale. But, they can operate only at low temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene ($\sim 2600 m^2/g$) we will need $\sim 450 m^2$ of MLG.

Calorimetry Setups Samples characterization

commercial devices

Usually commercial devices require:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature differences in devices at the nano-scale. But, they can operate only at low temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene ($\sim 2600m^2/g$) we will need $\sim 450m^2$ of MLG.

Calorimetry Setups Samples characterization

Our original calorimetric technique has been tested on a Ti-functionalized MLG sample, which is a system well investigated. Overall sample mass is **10 ng**, 6 order of magnitude lower than commercial device request.

Calorimetry Setups Samples characterization

Our original calorimetric technique has been tested on a Ti-functionalized MLG sample, which is a system well investigated. Overall sample mass is **10 ng**, 6 order of magnitude lower than commercial device request.

Calorimetry Setups Samples characterizatior

Outline

Calorimetry Setups Samples characterizatio

Sample & holder

Calorimetry at nano-scale

S. Veronesi

Calorimetry Setups Samples characterization

Thermometer working principle

All experiments are performed in Ultra-High Vacuum (UHV) environment (base pressure $\sim 10^{-10}$ mbar). Temperature is measured via the gold film resistance, following the linear relation:

 $R(T) = R_0 [1 + \alpha (T - T_0)]$ where R_0 is the resistance at the reference temperature T_0 (room temperature in our case) and α is the resistance temperature coefficient.

Calorimetry Setups Samples characterization

Outline

Calorimetry Setups Samples characterization

STM analysis

Figure: (a) STM image of the Au layer. Image parameters: V=1.0 V, I=1.0 nA, average RMS roughness: (0.8 ± 0.2) nm. (b) STM image of the MLG transferred on the Au layer. Image parameters: V=0.6 V, I=0.5 nA, average RMS roughness: (1.7 ± 0.5) nm. The inset shows a cross-sectional plot of a wrinkle taken along the blue line in the STM image. (c) STM image of 12.4 ML Ti evaporated on MLG. Image parameters: V=0.2 V, I=0.09 nA, average RMS roughness: (2.0 ± 0.5) nm. All images 500 × 500 nm².

Hydrogen uptake Enthalpy of process evaluatio

Outline

Motivation Experimental setup Experimental Results

Conclusions and Outlook

H<mark>ydrogen uptake</mark> Enthalpy of process evaluatio

Calorimetry during hydrogenation

(a) Ti deposition (for 539 s, 12.4 ML of Ti) on MLG. (b)Exposure of the Ti film to D₂(red line: exponential fit of the thermalization background). (c) Thermalization background subtracted. A $\Delta T = 0.065$ K is clearly detected. (d) TDS spectrum of Ti-MLG (Red line: smoothing).

S. Veronesi

<mark>Hydrogen uptake</mark> Enthalpy of process evaluatior

TDS analysis

Hydrogen uptake Enthalpy of process evaluation

TDS analysis

$$p V = F S = n R T$$

 $C \sim 200 L/c$

$$n(D_2) \rightarrow 1.71 \cdot 10^{-10} \text{ mol}$$

$$H_r = n N_A E_b = (21.8 \pm 1.3) \,\mu\text{J}$$

Hydrogen uptake Enthalpy of process evaluatio

Outline

Hydrogen uptake Enthalpy of process evaluatior

Thermal model

We can describe the system with a simple thermal model in which the thermometer is heated by the absorption of a thermal power $P(t) = \delta H_r / \delta t$ while at the same time it releases energy by heat losses towards the substrate. These two contributions are related by the following equation:

$$\delta H_r / \delta t = C \cdot \delta \Delta T(t) / \delta t + \lambda \cdot \Delta T(t)$$

The sensor heat capacity C and the thermal exchange coefficient λ must be evaluated.

M. Cassettari, F. Papucci, G. Salvetti, E. Tombari, S. Veronesi, G. Johari, "Simultaneous measurements of enthalpy and heat capacity of a thermosetting polymer during the curing process" Review of Scientific Instruments 1993, **64**, 1076-1080

Hydrogen uptake Enthalpy of process evaluatior

Heat capacity and losses evaluation

$$\Delta T(t) = \Delta T(0) + A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2} + A_3 e^{-t/\tau_3}$$

From the decay curve analysis and comsol simulation can be figure out

- the total heat capacity $C = (15.0 \pm 0.2) \cdot 10^{-6} \text{ J/K}$ with $C = C_{Au} + C_{Ti} + C_{SiO_2}$.
- The heat exchange coefficient λ as $\lambda = C/\tau_1 = (5.1 \pm 1.1) \cdot 10^{-6}$ W/K.

Hydrogen uptake Enthalpy of process evaluation

Enthalpy calculation

Hydrogen uptake Enthalpy of process evaluatio

Next generation of thermometer based on Mica substrate

Hydrogen uptake Enthalpy of process evaluation

Next generation of thermometer

An issue to solve is relative to surface roughness. Atomically speaking Gold thermometer has a rough surface which do not allow atomic resolution with STM. Mica allows surface reconstruction of Gold, solving this problem.

Hydrogen uptake Enthalpy of process evaluation

Next generation of thermometer

Moreover, the new sensor substrate (Mica) allows a better performance in terms of sensitivity.

Conclusions and Outlook

First direct measurement of enthalpy release during Hydrogen adsorption process

- resistance readout sensitivity $\sim 0.03 m\Omega$
- temperature variation sensitivity 10mK
- H_2 detected during adsorption ~ 0.2*ng* or $(1.71 \pm 0.01) \cdot 10^{-10}$ moles
- advantages:
 - calorimetric evaluation is direct and do not need H₂ desorption, while TDS need the desorption of the loaded H₂
 - in presence of a desorption barrier the calorimetric evaluation is not affected while TDS would include it
- Simultaneous investigation of energy transfer mechanisms and STM analysis on the same physical support

People

S. Veronesi Calorimetry at nan

thanks

Thank you for your attention

S. Veronesi Calorimetry at nano-scale

Raman Spectroscopy

Figure: (a) Raman intensity ratio map: each pixel gives the ratio between the intensity of the 2D peak vs the *G* peak. (b) Raman map showing the FWHM (in cm⁻¹) of the 2*D* peak.

COMSOL simulation

Figure: (a) Temperature distribution at t = 1 ns when the temperature jump of 2 K has just been applied to the topmost layer of the stack. All other parts of the stack are still at 303 K. (b) Temperature distribution at $t = 0.1 \ \mu s$.

Simulation mesh

Figure: (a) Evaluation mesh (free Triangular with a Normal Size) utilized in the COMSOL simulation. (b) Zoom–in of the top part of the sample.

Thermometer + MLG + Ti characterization

Ramp	α_f (K ⁻¹)
1	$(1.57\pm0.01)\cdot10^{-3}$
2	$(1.56 \pm 0.01) \cdot 10^{-3}$
3	$(1.58 \pm 0.02) \cdot 10^{-3}$
4	$(1.64 \pm 0.02) \cdot 10^{-3}$
5	$(1.63 \pm 0.02) \cdot 10^{-3}$
6	$(1.72\pm0.02)\cdot10^{-3}$

Table: Temperature coefficient of resistance (α_f) for each of the heating ramps presented in Figure. The average value is $\alpha_f = (1.62 \pm 0.05) \cdot 10^{-3} \text{ K}^{-1}$.

Figure: Resistance variation ($\Delta R = R(T) - R_0$) vs. temperature for six different heating experiments on the same Au+Ti–MLG sensor.

Calorimetry

The enthalpy variation consists in the change in internal energy ΔU plus the work L needed to change the system's volume V. Working at constant pressure allows a simplified relation between Enthalpy variation ΔH and heat exchanged δQ :

$$\Delta H = \Delta U + L = C_{p} \cdot \Delta T + V \cdot \Delta P = \delta Q + V \cdot \Delta P$$

In case of exothermic or endothermic reactions (with time-independent C_p):

$$\frac{\delta H_r}{\delta t} = C_p \cdot \frac{\delta \Delta T}{\delta t} + \lambda \cdot \Delta t$$

where $\lambda \cdot \Delta t$ represent losses toward the substrate