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A detailed knowledge of the energy exchange in the fast growing family of micro
and nano-systems could allow to obtain valuable information about the chemistry
and physics at the nano-scale. A calorimetric evaluation of tiny samples would
represent a precious source of information in developing

@ Sensors

o Catalyzers
@ Molecules of pharmaceutical interest
o H-Storage devices

Even if performance is improving with time, commercial calorimeters are still far
from the access to nano-scale samples.
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devices

Usually commercial devices require:
@ sample mass in the mg range (usually 10 mg)
@ limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature
differences in devices at the nano-scale. But, they can operate only at low
temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H, on a
MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the
specific surface area of graphene (~ 2600m?/g) we will need ~ 450m? of MLG.

S. Veronesi




Motivation
Experimental setup

Experimental Results
Conclusions and Outlook

Our original calorimetric technique has been tested on a Ti-functionalized MLG
sample, which is a system well investigated. Overall sample mass is 10 ng, 6
order of magnitude lower than commercial device request.
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Experimental setup

Ti
Graphene
Au, 20 nm

Ti,5nm

Si03 290 nm

Si, 300 um

5.5mm
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All experiments are performed in
Ultra-High Vacuum (UHV) environment
(base pressure ~ 10~ '9mbar).
Temperature is measured via the gold
film resistance, following the linear
relation:

R(T) = Ro[1 + o (T — Tp)]

where Ry is the resistance at the
reference temperature Ty (room
temperature in our case) and « is the
resistance temperature coefficient.

DeltaR (Ohm)

sample ¢ Ry(variable)

— after mounting 1_a
—— after mounting 1_b|
—— after mounting 2
—— after mounting 3
after mounting 4

300 350 400 450 500 550
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Experimental setup

STM analysis

Figure: (a) STM image of the Au layer. Image parameters: V=1.0 V, I=1.0 nA, average RMS roughness:

(0.8 +0.2) nm. (b) STM image of the MLG transferred on the Au layer. Image parameters: V=0.6 V, [=0.5 nA,
average RMS roughness: (1.7 + 0.5) nm. The inset shows a cross-sectional plot of a wrinkle taken along the
blue line in the STM image. (c) STM image of 12.4 ML Ti evaporated on MLG. Image parameters: V=0.2 V,
1=0.09 nA, average RMS roughness: (2.0 & 0.5) nm. All images 500 x 500 nm?.

S. Veronesi Calorimetry at nano-scale



o

@ Hydrogen uptake




Experimental Results
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TDS spectrum vs Temp
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Experimental Results

TDS spectrum vs time
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We can describe the system with a simple thermal model in which the
thermometer is heated by the absorption of a thermal power P(t) = dH,/dt while
at the same time it releases energy by heat losses towards the substrate. These
two contributions are related by the following equation:

SH, /5t = C - SAT(1)/5t + X AT(t)

The sensor heat capacity C and the thermal exchange coefficient A must be
evaluated.

M. Cassettari, F. Papucci, G. Salvetti, E.Tombari, S.Veronesi, G. Johari, "Simultaneous measurements of
enthalpy and heat capacity of a thermosetting polymer during the curing process" Review of Scientific
Instruments 1993, 64, 1076-1080
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ipacity and losses evaluation

AT(t) = AT(0) + Are™ /71 + Aye™"/m2 + Aze™"= ‘

From the decay curve analysis and
comsol simulation can be figure out
4 o the total heat capacity
C=(15.04+0.2)-1078 J/K
with C = Cyy + C7i + Cs,'oz.
"’ Hes = @ The heat exchange coefficient \ as
A=C/r =(5.1+1.1) 1078 WK.

> 1, =(29402)s
> T,=(4742)s
| > 13=(475+5)s

DeltaT (°K)
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calculation

8H, /5t = C-SAT(t)/5t+ X - AT(1)
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of thermometer

An issue to solve is relative to surface roughness. Atomically speaking Gold thermometer
has a rough surface which do not allow atomic resolution with STM. Mica allows surface
reconstruction of Gold, solving this problem.
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eration of thermometer

Moreover, the new sensor substrate (Mica) allows a better performance in terms of
sensitivity.
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s and Outlook

First direct measurement of enthalpy release during Hydrogen adsorption process
@ resistance readout sensitivity ~ 0.03m<
@ temperature variation sensitivity 10mK
@ H, detected during adsorption ~ 0.2ng or (1.71 +0.01) - 10~'° moles
Qo

advantages:
o calorimetric evaluation is direct and do not need H. desorption, while TDS need
the desorption of the loaded H-
o in presence of a desorption barrier the calorimetric evaluation is not affected
while TDS would include it
Simultaneous investigation of energy transfer mechanisms and STM analysis
on the same physical support
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Spectroscopy
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OL simulation
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(a) Temperature distribution at t = 1 ns when the temperature jump of 2 K has just been applied to the
topmost layer of the stack. All other parts of the stack are still at 303 K. (b) Temperature distribution at t = 0.1 us.
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(a) Evaluation mesh (free Triangular with a Normal Size) utilized in the COMSOL simulation. (b) Zoom—in
of the top part of the sample.
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eter + MLG + Ti characterization
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temperature for six different heating experiments on the
same Au+Ti-MLG sensor.
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The enthalpy variation consists in the change in internal energy AU plus the work
L needed to change the system’s volume V. Working at constant pressure allows a
simplified relation between Enthalpy variation AH and heat exchanged /Q:

AH=AU+L=Cp, - AT+ V- -AP=6Q+ V- AP
In case of exothermic or endothermic reactions (with time-independent Cp):

OHy OAT

where \ - At represent losses toward the substrate
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