Palladium/Black Phosphorus Nanohybrid Unraveling the Nature of Pd-P Interaction and Application in Catalysis

Matteo Vanni

Palladium/Black Phosphorus Nanohybrid Unraveling the Nature of Pd-P Interaction and Application in Catalysis

Black Phosphorus (bP) as a P counterpart of Graphite

Black phosphorus crystals.

SEM image highlighting the laminar structure

Puckered honeycomb structure of black phosphorus.

sp³ hybridized P atoms

SEM image of a graphite crystal

sp² hybridized C atoms

Black phosphorus exfoliation

X. H. Chen, Y. Zhang et al., Nat. Nanotechnol. 2014

mechanical exfoliation

solvent assisted exfoliation

Anchoring Metal Fragments: Coordinative Abilities of bP

Top view and side view of phosphorene lone pairs (green)

Functionalization with molecular fragments

Functionalization with M NPs

H. Wang, X.-F. Yu, P. K. Chu *et al.*, *Angew. Chem. Int. Ed.*, **2016**

Pd/bP: a New M/bP Nanohybrid

H₂O, EtOH, THF

Η,

TEM (a) and **SEM** (b) image of a Pd/bP flake

 $Pd(NO_3)_2 +$

20 nm

 $t \approx 5 \text{ nm}$

AFM height profile of a Pd/bP flake

exfoliated bP

P

12.00 mm

0.00 nm

Рн₂= 5 bar, RT, 1h

Preliminar Characterization

HRTEM-EELS First Evidence of Strong P-Pd Interaction

Comparative analysis of the P_L edge between Pd free regions (red area) and Pd/bP regions (blue area) reveals modification in the EELS profile around 137-140 eV

XPS

(*) M. Caporali, L. Gonasalvi et al., ChemCatChem 2013

Going Further Gaining Structural Insights from EXAFS

The LISA beamline. Side view of the EH2 cabin. 1, slits; 2, ion chamber I0; 3, sample chamber; 4, ion chamber I1; 5, reference foils holder; 6, ion chamber (D'Acapito *et al., J. of Sync. Rad.*, 2019).

ESRF, Grenoble

The new nanohybrid Pd/bP was studied by XAS comparing it with Pd, PdO, PdP₂ and Pd@PTA.

EXAFS Study

	Sample	CNs Pd-Pd	R _{PdPd} (Å)	σ² _{PdPd} (Ų)	CNs Pd-P	R _{PdP} (Å)	s² _{PdP} (Ų)
→	Pd foil	12	2.74(1)	0.0059(4)	-	-	-
	Pd/C	7(2)	2.73(1)	0.0065(5)	-	-	-
	Pd/bP	8(2)	2.77(3)	0.016(4)	1.7(6)	2.26(3)	0.0018(6)
	Pd@PTA	8(2)	2.73(2)	0.009(2)	0.7(2)	2.25(3)	0.004
	PdP ₂	-	-	-	3.8(6)	2.32(2)	0.004(2)
	PdO	4 O	2.01(2)	0.002(1)	-	-	-

Conclusions from the EXAFS study

EXAFS data confirmed the presence of a strong coordinative bond of covalent nature between Pd and P, with a bond distance of **2.26(3)** Å comparable to that of **Pd@PTA** and to the molecular cation **Pd(PTAH)**₄⁴⁺

(*) D. J. Darensbourg et al., Inorg. Chem., 1997

From Chloronitrobenzene to Chloroaniline

Stoichiometric Route

Catalytic Conversion

Selective Hydrogenation with Pd/bP

Dehalogenation scheme

Pd/bP was compared with Pd/C (Ketjen black)

drawback of catalytic hydrogenations: C-CI hydrogenolysis

Characterization of **Pd/C** catalyst prepared under the same reaction conditions used for bP

Selective Hydrogenation with Pd/bP

Catalyst	Substrate	Time	S/C	Conv. % ^a	Select. %	TOF⁵ (h⁻¹)	
Pd/bP	1-chloro-3- nitrobenzene	30'	162	99.1	97.7	313	
	1-chloro-2- nitrobenzene	40'	162	99.5	97.3	235	%
Pd/C	1-chloro-2- nitrobenzene	30'	191	99.9	78.1	298	

Recycling test

- **Pd/bP** remained active and selective for 6 consecutive runs.

- **Pd/bP** was stable toward NPs agglomeration.

TEM image of a Pd/bP flake after a catalytic run.

Conclusions

- Synthesis of a new Pd/bP nanohybrid

- Detailed experimental study of the Pd-P interaction

- Successfull application as catalyst in the hydrogenation of chloronitrobenzene

The Phosfun group

European Research Council

PBSI 2019 International Conference On

Phosphorus, Boron and Silicon

Dec 2-4, 2019

Rome

Prof. Simon Aldridge Prof. Guy Bertrand Prof. Matthias Driess Prof. Lyndon Emsley Prof. Sylviane Sabo-Etienne Prof. Muriel Hissler Prof. Torben René Jensen Prof. Torben René Jensen Prof. Aziz M. Muzafarov Prof. Paul G Pringle Dr. Anna Tampieri Prof. Francesc Teixidor Prof. Norihiro Tokitoh

Plenary speakers

Chairman: Dr. Maurizio Peruzzini

National Steering Committee:

Dr. Silvia Borsacchi Dr. Maria Caporali Dr. Andrea Rossin

Steering Committee:

Prof. Anne-Marie Caminade Prof. Evamarie Hey-Hawkins Prof. Clara Viñas

Venue:

Roma Eventi Piazza di Spagna www.premc.org/pbsi

