Ohmic contact engineering in few-layer Black Phosphorus

National Enterprise for nanoScience and nanoTechnology NEST Piazza San Silvestro 12, 56127 Pisa, Italy

Gwenael LE GAL

Under the supervision of Dr Stefan HEUN, Dr Francesca TELESIO

- New materials for different applications than silicon-based electronics
- 2D semiconducting materials for multifunctional devices

X. Ling et al., PNAS 112 (2015) 4253

- Perspective of black phosphorus field-effect transistors
- What is the best contacting metal to black phosphorus ?

- Black Phosphorus presentation
- Metal-Semiconductor contact
- Electrical contact engineering
- Field-Effect transistors
- Field-effect transport measurements
- Summary and discussion

Black Phosphorus Presentation

N. Hemsworth et al., Phys. Rev. B 94 (2016) 245404

- Layered & puckered structure
- Intrinsic P-doped semiconductor
- Direct band gap from 0,3 eV to 1-2 eV, tunable with strain and layer number
- High hole mobility : 64000 cm²/(V.s) at 30K (A. Morita, Appl. Phys. A 39 (1986) 227)
 - Highly anisotropic & reactive material

Metal-Semiconductor Contact

- Holes accumulation at the interface
- Ohmic contact
- Drift-Diffusion current

Metal-Semiconductor Contact

- Schottky barrier for holes at the interface
- Schottky contact
- Thermoionic and tunnel current

Electrical contact engineering

• 3 different metals : Chromium, Titanium, Nickel

 $\Phi_{Cr} \approx 4,5 \text{ eV}, \Phi_{Ti} \approx 4,3 \text{ eV}, \Phi_{Ni} \approx 5,0 \text{ eV}, \Phi_{bP} \approx 4,5 \text{ eV}$ (Y. Cai et al., Sci. Rep. 4 (2014) 6677)

Needle-shaped flakes for inter-digitated contacts geometry

• 2-probe resistance measurements for Transfer Length Method (TLM)

4-probe resistance measurements for comparison with TLM

• Room temperature and low temperature measurements in a cryostat at liquid He temperature (4,2 K)

$$R_{2-probe} = \frac{R_s}{W}L + 2R_C$$

R_c : Contact resistance (Ω) R_s : Sheet resistance (Ω/ \Box) W : Channel width (m) L : Channel length (m)

Channel resistivity $\rho_S = R_s \frac{W \times t}{L}$

Contact resistivity $\rho_C = R_C A_C$

I-V curves in 2-probe configuration Ni contacts 1,5x10⁻⁷ 1,0x10⁻⁷ ----- L = 2,1 μm Room T ----- L = 2,8 μm Room T ----- L = 2,1 μm Low T ----- L = 2,8 μm Low T 5,0x10⁻⁸ (A) 0,0 -1,0x10⁻³ 1,0x10⁻³ 0,0 -5,0x10⁻⁸ V (V)

 $\frac{1}{R_{2-probe}} = \frac{dI}{dV}$

National Enterprise for nanoScience and nanoTechnology

For the three contacting metals :

- Ohmic-like contact between -1 mV and 1 mV
- R_{2-probe} increases with L as expected

-1,0x10⁻⁷ -1,5x10⁻⁷

• R_{2-probe|Room T} < R_{2-probe|Low T}

$\Phi_{\rm Cr} \approx 4.5 \text{ eV}, \Phi_{\rm Ti} \approx 4.3 \text{ eV}, \Phi_{\rm Ni} \approx 5.0 \text{ eV}, \Phi_{\rm bP} \approx 4.5 \text{ eV}$

s	Room Temperature					
	Equation Fit	$R_{s}/W~(k\Omega/\mu m)$	$R_{s}(k\Omega/\Box)$	R_{c} (k Ω)	$ ho_c (k\Omega.\mu m^2)$	$R_{c} = (R_{2\text{-probe}}\text{-}R_{4\text{-probe}})/2$
			$W = 2 \ \mu m$			
Cr	4,43x + 0,75	$4,43 \pm 0,11$	8.86	0,38 ± 0,12	0.15	0.28 ± 0.08
			$W = 1.3 \ \mu m$			
Ti	4,56x + 0,97	$4,56 \pm 0,23$	5.93	0,49 := 0,25	0.13	$0,47\pm0,05$
			$W = 0.9 \ \mu m$			
Ni	5,83x + 0,48	$5,83 \pm 0,11$	5.25	$0,24 \pm 0,07$	0.04	$0,15\pm0,01$
			9			
	Low Temperature					
	Equation Fit	$R_{s}/W~(k\Omega/\mu m)$	$R_s (k\Omega/\Box)$	$R_{c}(k\Omega)$	ρ_{c} (k Ω . μ m ²)	$R_c = (R_{2-probe} - R_{4-probe})/2$
			$W = 2 \ \mu m$			
Cr	10,59x + 2,35	$10,\!59\pm0,\!22$	21.20	$1,18 \pm 0,40$	0.47	$1,17 \pm 0,39$
			$W = 1.3 \ \mu m$			
Ti	6,72x + 2,09	$6{,}72\pm0{,}74$	8.75	1,05 = 0,80	0.27	1,0 ± 0,5
			$W = 0.9 \ \mu m$			
		7 (2) 0 (1	607	1.09 1.0.42	0.10	0.07 0.15
N1	7,63x + 2,15	$7,63 \pm 0,61$	0.8/	$1,08 \pm 0,43$	0.19	$0,97 \pm 0,15$

Field-Effect Transistor

S.M. Sze, Physics of semiconductor devices, Ed. John Wiley & Sons, 1981

With P-doped semiconductor :

- V_g < 0 : holes accumulation in the channel and easier hole injection at the contact
- V_g > 0 : depletion and inversion in the channel, easier electron injection at the contact

Ni contacts 8,0x10⁻⁴ 4-probe measurement Low T 6,0x10⁻⁴ () 4,0x10⁻⁴ 2.0x10⁻⁴ 0,0 20 40 60 -100 -80 -60 -40 -20 0 80 100 Vg (V)

Field-Effect Mobility

	μ_{FE} from G vs Vg (cm ² /(V.s))
Ti Room Temperature	160,11
Ti Low Temperature	563,37
Cr Room Temperature	39,21
Cr Low Temperature	-
Ni Room Temperature	223,51
Ni Low Temperature	1252,16

4-probe conductance (G) measurement :

- Mobility of the semiconductor
- No contribution from the contacts

$$\mu_{FE} = \frac{dG}{dV_g} \frac{L}{W} \frac{1}{C_{OX}}$$

L : gate length (m) W : gate width (m) C_{ox} : Oxide capacitance per unit of area (F/m²)

- Ohmic contact gives lower contact resistance :
 - More scattering in Titanium datas
 - Nickel has the lowest contact resistivity
- In this framework Nickel gives the best results with a good ohmic contact
- More scattering in Titanium datas and more defects, the one to avoid
- All our FETs displayed unipolar behaviour
- Good mobility values according to what is found in the literature

- Extraction of Schottky barrier height to see the real nature of the contact
- Simulations of the interface to theoritically confirm those results
- Try with other metals to see if we can find better than Nickel
- Ambipolar behaviour is expected for thinner flakes (close to monolayer)

Thank you for your attention

• Field-effect mobility

