Ohmic contact engineering in few-layer Black Phosphorus

National Enterprise for nanoScience and nanoTechnology NEST
Piazza San Silvestro 12, 56127 Pisa, Italy

Gwenael LE GAL
Under the supervision of Dr Stefan HEUN, Dr Francesca TELESIO
Context

• New materials for different applications than silicon-based electronics

• 2D semiconducting materials for multifunctional devices

X. Ling et al., PNAS 112 (2015) 4253

• Perspective of black phosphorus field-effect transistors

• What is the best contacting metal to black phosphorus?
Outline

• Black Phosphorus presentation

• Metal-Semiconductor contact

• Electrical contact engineering

• Field-Effect transistors

• Field-effect transport measurements

• Summary and discussion
Black Phosphorus Presentation

- Layered & puckered structure
- Intrinsic P-doped semiconductor
- Direct band gap from 0.3 eV to 1-2 eV, tunable with strain and layer number
- Highly anisotropic & reactive material

Metal-Semiconductor Contact

- Holes accumulation at the interface
- Ohmic contact
- Drift-Diffusion current
Metal-Semiconductor Contact

- Schottky barrier for holes at the interface
- Schottky contact
- Thermoionic and tunnel current
Electrical contact engineering

- 3 different metals: Chromium, Titanium, Nickel
 \[\Phi_{Cr} \approx 4.5 \text{ eV}, \Phi_{Ti} \approx 4.3 \text{ eV}, \Phi_{Ni} \approx 5.0 \text{ eV}, \Phi_{bP} \approx 4.5 \text{ eV} \] (Y. Cai et al., Sci. Rep. 4 (2014) 6677)

- Needle-shaped flakes for inter-digitated contacts geometry
Measurement setup

- 2-probe resistance measurements for Transfer Length Method (TLM)

\[2 \times R_C = R_{2-probe} - R_{4-probe} \]

- 4-probe resistance measurements for comparison with TLM

- Room temperature and low temperature measurements in a cryostat at liquid He temperature (4.2 K)
Transfer Length Method

\[
R_{2-probe} = \frac{R_S}{W} L + 2R_C
\]

- \(R_c\): Contact resistance (\(\Omega\))
- \(R_s\): Sheet resistance (\(\Omega/\square\))
- \(W\): Channel width (m)
- \(L\): Channel length (m)

Channel resistivity \(\rho_S = R_s \frac{W \times t}{L}\)

Contact resistivity \(\rho_C = R_C A_C\)
I-V curves in 2-probe configuration

For the three contacting metals:

- Ohmic-like contact between -1 mV and 1 mV
- $R_{2\text{-probe}}$ increases with L as expected
- $R_{2\text{-probe}\mid \text{Room T}} < R_{2\text{-probe}\mid \text{Low T}}$
The intercept and the slope are extracted to estimate R_c and R_s.

The slope is given by R_s/W.

$R_{2-probe} = 2R_c$.

Ni contacts:
- Room T
- Low T
- Fit Room T
- Fit Low T

Ti contacts:
- Room T
- Low T
- Fit Room T
- Fit Low T

Cr contacts:
- Room T
- Low T
- Fit Room T
- Fit Low T
TLM Results

\[\Phi_{\text{Cr}} \approx 4.5 \text{ eV}, \quad \Phi_{\text{Ti}} \approx 4.3 \text{ eV}, \quad \Phi_{\text{Ni}} \approx 5.0 \text{ eV}, \quad \Phi_{\text{bP}} \approx 4.5 \text{ eV} \]

<table>
<thead>
<tr>
<th></th>
<th>(R_s/W) (k(\Omega/\mu\text{m}))</th>
<th>(R_s) (k(\Omega/\square))</th>
<th>(R_c) (k(\Omega))</th>
<th>(\rho_c) (k(\Omega \cdot \mu\text{m}^2))</th>
<th>(R_c = (R_{2\text{-probe}} - R_{4\text{-probe}})/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>4.43x + 0.75</td>
<td>4.43 ± 0.11</td>
<td>8.86</td>
<td>0.38 ± 0.12</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(W = 2 \mu\text{m})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>4.56x + 0.97</td>
<td>4.56 ± 0.23</td>
<td>5.93</td>
<td>0.49 ± 0.25</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(W = 1.3 \mu\text{m})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>5.83x + 0.48</td>
<td>5.83 ± 0.11</td>
<td>5.25</td>
<td>0.24 ± 0.07</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(W = 0.9 \mu\text{m})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low Temperature

<table>
<thead>
<tr>
<th></th>
<th>(R_s/W) (k(\Omega/\mu\text{m}))</th>
<th>(R_s) (k(\Omega/\square))</th>
<th>(R_c) (k(\Omega))</th>
<th>(\rho_c) (k(\Omega \cdot \mu\text{m}^2))</th>
<th>(R_c = (R_{2\text{-probe}} - R_{4\text{-probe}})/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>10.59x + 2.35</td>
<td>10.59 ± 0.22</td>
<td>21.20</td>
<td>1.18 ± 0.40</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(W = 2 \mu\text{m})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td>6.72x + 2.09</td>
<td>6.72 ± 0.74</td>
<td>8.75</td>
<td>1.05 ± 0.80</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(W = 1.3 \mu\text{m})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>7.63x + 2.15</td>
<td>7.63 ± 0.61</td>
<td>6.87</td>
<td>1.08 ± 0.43</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Field-Effect Transistor

With P-doped semiconductor:

- $V_g < 0$: holes accumulation in the channel and easier hole injection at the contact
- $V_g > 0$: depletion and inversion in the channel, easier electron injection at the contact

Field-Effect Measurements

- I_{SD} vs V_G characteristics

S. Das et al., ACS Nano 8 (2014) 11730
Field-Effect Mobility

4-probe conductance (G) measurement:

- Mobility of the semiconductor
- No contribution from the contacts

\[
\mu_{FE} = \frac{dG}{dV_g} \frac{L}{W} \frac{1}{C_{OX}}
\]

L : gate length (m)
W : gate width (m)
C_{OX} : Oxide capacitance per unit of area (F/m²)

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature</th>
<th>(\mu_{FE}) from G vs Vg (cm²/(V.s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>Room Temperature</td>
<td>160,11</td>
</tr>
<tr>
<td>Ti</td>
<td>Low Temperature</td>
<td>563,37</td>
</tr>
<tr>
<td>Cr</td>
<td>Room Temperature</td>
<td>39,21</td>
</tr>
<tr>
<td>Cr</td>
<td>Low Temperature</td>
<td>-</td>
</tr>
<tr>
<td>Ni</td>
<td>Room Temperature</td>
<td>223,31</td>
</tr>
<tr>
<td>Ni</td>
<td>Low Temperature</td>
<td>1252,16</td>
</tr>
</tbody>
</table>
Summary

• Ohmic contact gives lower contact resistance:
 - More scattering in Titanium datas
 - Nickel has the lowest contact resistivity

• In this framework Nickel gives the best results with a good ohmic contact

• More scattering in Titanium datas and more defects, the one to avoid

• All our FETs displayed unipolar behaviour

• Good mobility values according to what is found in the literature
Outlooks

• Extraction of Schottky barrier height to see the real nature of the contact

• Simulations of the interface to theoretically confirm those results

• Try with other metals to see if we can find better than Nickel

• Ambipolar behaviour is expected for thinner flakes (close to monolayer)
Acknowledgement
Thank you for your attention
Field-Effect Measurements

- **Field-effect mobility**

\[
\mu_{FE} = \frac{dI_{SD}}{dV_g} \frac{L}{W \cdot C_{OX} \cdot V_{SD}} \frac{1}{V_{SD}}
\]

\[
\mu_{FE} = \frac{dG}{dV_g} \frac{L}{W \cdot C_{OX}} \frac{1}{V_{SD}}
\]

<table>
<thead>
<tr>
<th>Extracted μ_{FE} (cm2/V.s)</th>
<th>I_{SD} vs V_g</th>
<th>G vs V_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti Room Temperature</td>
<td>61.51</td>
<td>160.11</td>
</tr>
<tr>
<td>Ti Low Temperature</td>
<td>216.43</td>
<td>563.37</td>
</tr>
<tr>
<td>Cr Room Temperature</td>
<td>23.46</td>
<td>39.21</td>
</tr>
<tr>
<td>Cr Low Temperature</td>
<td>101.46</td>
<td>-</td>
</tr>
<tr>
<td>Ni Room Temperature</td>
<td>78.30</td>
<td>223.51</td>
</tr>
<tr>
<td>Ni Low Temperature</td>
<td>391.17</td>
<td>1252.16</td>
</tr>
</tbody>
</table>