CNR-NANO (PISA) NEST Laboratory Scuola Normale Superiore

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

INVESTIGATION OF HYBRID JOSEPHSON JUNCTION FOR TOPOLOGICAL APPLICATIONS

Dr. Matteo Carrega

Outline

- Topological states of matter
- Anyons in condensed matter
- Coexistence of Quantum Hall and superconductivity

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- New tunable JJ geometry
- Outlook and perspectives

Topological states

NEWS IN FOCUS

Nobel for 2D exotic matter

Physics award goes to theorists who used topology to explain strange phenomena.

BY ELIZABETH GIBNEY AND DAVIDE CASTELVECCHI

The source of the second secon

Physics prizewinners Michael Kosterlitz (left), David Thouless (centre) and Duncan Haldane (right)

Topology in condensed matter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intrinsic robustness \leftrightarrow Topological protection

Quantum Hall effect

Von Klitzing'80, Laughlin'83, Tsui'99

Fractional charge statistics

and

Büttiker'88

FIG. 4. Quasiclassical skipping orbits along the upper edge of the sample in presence of a localized impurity. In a high magnetic field backscattering over distances large compared to the cyclotron radius is suppressed.

- first topological state of matter
- chiral edge states

Anyons in FQHE

Non abelian anyons with effective charge e/4

chiral Majorana modes on the edge

Stern'08, Dolev'10, Carrega et al., PRL'11

Kitaev chain

Majorana modes in condensed matter

$$H = \sum_{x} \left[-\mu c_{x}^{\dagger} c_{x} - \frac{1}{2} \left(T c_{x}^{\dagger} c_{x+1} + \Delta c_{x} c_{x+1} + \text{H.c.} \right) \right],$$

Smokin gun evidence still lacking

Kitaev'01, Oreg'10, Lutchin'10, Alicea'14

Quantum Hall/Superconductor

other platforms hosting anyons with non-trivial braiding

$$\gamma_{x}\gamma_{x'}=\gamma_{x'}\gamma_{x}e^{i\frac{2\pi}{N}\mathrm{sgn}(x'-x)}$$

N = 2 Majorana modes N > 2 Parafermions

integer/fractional quantum Hall with superconducting proximity effect!

Alicea'12, Lindner'12, Alicea'15

QH/SC experiment

Coexistence of superconductivity and quantum Hall regime

- Superconductors with high critical field B_C
- quantum Hall plateau at relatively low B field

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

JJ supercurrent mediated by QH edge states Ben Shalom'16, Lee'16, Amet'17

Hybrid 2DEG/SC

Josephson-junction with InAs guantum well and Nb contacts

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $n_{2D} = 6.2 \cdot 10^{11} \text{ cm}^{-2}$ $\mu = 1.6 \cdot 10^5 \text{ cm}^2/(\text{V s})$

 $I_{MFP} = 2.16 \ \mu m$

Hybrid 2DEG JJ with patterned side gates Guiducci et al., PSS (RRL) 1800222 2018

Superconductivity

critical temperature $T_C = 8.1 \text{ K} \rightarrow \Delta_{Nb} = 1.235 \text{ meV}$ critical field $B_C = 2.77 \text{ T}$ at T = 320 mK

clean and ballistic regime $\xi_0 < I < I_{MFP}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Guiducci et al., PSS(RRL) 1800222 2018

Josephson supercurrent

supercurrent flow monitored by $V_{SD}(I_{SD})$ Typical hysteretic behaviour of Josephson device $\rightarrow I_C = 170$ nA

Manipulation of I_C and R_n by changing 2D electron density

Side gates make it a Jo-FET

Guiducci et al., PSS(RRL) 1800222 2018

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Quantum Hall regime

Quantum Hall plateau develop at $B \ge 1.5$ T

Filling factor $\nu = 2$ at B = 3 T and $V_{gate} = 3$ V

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Guiducci et al., PSS(RRL) 1800222 2018

New hybrid device

Hybrid Josephson junction with removed central region

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Supercurrent with fast and slow oscillations

Fast oscillations caused by the hole (with no gate dependence)

Guiducci et al., ArXiv:1903.02819 2019

Tuning quantum interference

asymmetric gating \rightarrow independent tuning of I_c in each arm

From Fraunhofer pattern to SQuID behaviour

Guiducci et al., ArXiv:1903.02819 2019

Conclusions and outlook

- New topological states of matter
- Coexistence of quantum Hall and superconducting correlations
- New hybrid superconductor/semiconductor geometry

S. Guiducci et al., Towards quantum Hall effect in a Josephson junction (2018);
S. Guiducci et al., Full electrostatic control of quantum interference in an extended trenched Josephson junction (2019);

▲□▶▲@▶▲≣▶▲≣▶ ≣ ∽੧♡

ふして 山田 ふぼやえばや 山下