Investigating simultaneously energy (heat) exchange and surface physics on samples at the nanoscale

L. Basta,¹ S. Veronesi,¹ T. Papa,¹ Y. Murata,¹ Z. Dubois,¹ N. Mishra,^{2,3} F. Fabbri,¹ C. Coletti^{2,3} and S. Heun¹

¹NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silestro 12, 56127 Pisa, Italy
²Center for Nanotechnology Innovation @ NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy
³Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

Catania, FisMat 2019, September 30 - October 4

Outline

Motivation

A detailed knowledge of the energy exchange in the fast growing family of micro and nano-systems could allow to obtain valuable information about the chemistry and physics at the nano-scale. A calorimetric evaluation of tiny samples would represent a precious source of information in developing

- Sensors
- Catalyzers
- Molecules of pharmaceutical interest
- H-Storage devices

Even if performance is improving with time, commercial calorimeters are still far from the access to nano-scale samples.

Motivation

A detailed knowledge of the energy exchange in the fast growing family of micro and nano-systems could allow to obtain valuable information about the chemistry and physics at the nano-scale. A calorimetric evaluation of tiny samples would represent a precious source of information in developing

- Sensors
- Catalyzers
- Molecules of pharmaceutical interest
- H-Storage devices

Even if performance is improving with time, commercial calorimeters are still far from the access to nano-scale samples.

Outline

Nano-scale Calorimetry Setups

samples and signals

In performing calorimetry on nano-systems in UHV environment two aspects must be taken into account:

- sample mass
- thermal signal characteristics

Tipically a sample based on a 2D materials spans at most over a few square mm area, that means a mass in the ng range.

A chemical reaction occurring in UHV environment between a functionalized surface and a gas atom/molecule run slowly. At a gas supply pressure of 10^{-7} - 10^{-8} mbar, the time necessary to have a monolayer on the surface is 10-100 s.

Nano-scale Calorimetry Setups

samples and signals

In performing calorimetry on nano-systems in UHV environment two aspects must be taken into account:

- sample mass
- thermal signal characteristics

Tipically a sample based on a 2D materials spans at most over a few square mm area, that means a mass in the ng range.

A chemical reaction occurring in UHV environment between a functionalized surface and a gas atom/molecule run slowly. At a gas supply pressure of 10^{-7} - 10^{-8} mbar, the time necessary to have a monolayer on the surface is 10-100 s.

Nano-scale Calorimetry Setups

samples and signals

In performing calorimetry on nano-systems in UHV environment two aspects must be taken into account:

- sample mass
- thermal signal characteristics

Tipically a sample based on a 2D materials spans at most over a few square mm area, that means a mass in the ng range.

A chemical reaction occurring in UHV environment between a functionalized surface and a gas atom/molecule run slowly. At a gas supply pressure of 10^{-7} - 10^{-8} mbar, the time necessary to have a monolayer on the surface is 10-100 s.

commercial devices

Nano-scale Calorimetry Setups

Usually commercial devices require:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature differences in devices at the nano-scale. But, they can operate only at low temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene ($\sim 2600 \text{ m}^2/\text{g}$) we will need $\sim 450 \text{ m}^2$ of MLG.

Nano-scale Calorimetry Setups

commercial devices

Usually commercial devices require:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature differences in devices at the nano-scale. But, they can operate only at low temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene ($\sim 2600 \text{ m}^2$ /g) we will need $\sim 450 \text{ m}^2$ of MLG.

Nano-scale Calorimetry Setups

commercial devices

Usually commercial devices require:

- sample mass in the mg range (usually 10 mg)
- limited energy sensitivity (~ mJ)

Sensitive thermometric techniques are able to measure milli-Kelvin temperature differences in devices at the nano-scale. But, they can operate only at low temperatures (below a few Kelvin).

What does it mean for Ti-Hydrogen system? If we want to detect 10 mg of H_2 on a MLG, considering US Department of Energy DOE prescriptions (5.5 wt.%) and the specific surface area of graphene ($\sim 2600 \text{ m}^2/\text{g}$) we will need $\sim 450 \text{ m}^2$ of MLG.

Vano-scale Calorimetry Setups

Outline

Nano-scale Calorimetry Setups

Sample & holder

Our original calorimetric technique has been tested on a Ti-functionalized MLG sample, which is a system well investigated. Overall sample mass is **10 ng**, 6 orders of magnitude lower than commercial device request.

Calorimetry at nano-scale

S. Veronesi

Nano-scale Calorimetry Setups

Thermometer and thermal model

All experiments are performed in Ultra-High Vacuum (UHV) environment (base pressure $\sim 10^{-10} mbar$). Temperature is measured via the gold film resistance, following the linear relation:

 $\boldsymbol{R}(\boldsymbol{T}) = \boldsymbol{R}_0 \left[1 + \alpha \left(\boldsymbol{T} - \boldsymbol{T}_0 \right) \right]$

where R_0 is the resistance at the reference temperature T_0 (room temperature in our case) and α is the resistance temperature coefficient.

We can describe the system with a simple thermal model in which the thermometer is heated by the absorption of a thermal power $P(t) = \delta H_r / \delta t$ while at the same time it releases energy by heat losses towards the substrate. These two contributions are related by the following equation:

 $\delta H_r/\delta t = C \cdot \delta \Delta T(t)/\delta t + \lambda \cdot \Delta T(t)$

The sensor heat capacity C and the thermal exchange coefficient λ must be evaluated.

M. Cassettari, F. Papucci, G. Salvetti, E. Tombari, S. Veronesi, G. Johari, "Simultaneous measurements of enthalpy and heat capacity of a thermosetting polymer during the curing process" Review of Scientific Instruments 1993, **64**, 1076-1080

Hydrogen uptake Enthalpy of process evaluation

Outline

Hydrogen uptake Enthalpy of process evaluation

Calorimetry during hydrogenation

(a) Ti deposition (for 539 s, 12.4 ML of Ti) on MLG. (b)Exposure of the Ti film to D₂(red line: exponential fit of the thermalization background). (c) Thermalization background subtracted. A $\Delta T = 0.065 \text{ K}$ is clearly detected. (d) TDS spectrum of Ti-MLG (Red line: smoothing)

Hydrogen uptake Enthalpy of process evaluation

Outline

S. Veronesi Calorimetry at nano-scale

Hydrogen uptake Enthalpy of process evaluation

Enthalpy calculation

Calorimetry

 $\delta H_r / \delta t = C \cdot \delta \Delta T(t) / \delta t + \lambda \cdot \Delta T(t)$

- Total heat capacity $C = (15.0 \pm 0.2) \cdot 10^{-6} \text{ J/K}$ with $C = C_{Au} + C_{Ti} + C_{SiO_2}$.
- Heat exchange coefficient λ $\lambda = C/\tau_1 = (5.1 \pm 1.1) \cdot 10^{-6}$ W/K.
- Enthalpy release $H_r = (23.4 \pm 4.7) \mu J$

TDS analysis

- Binding energy $E_d = (1.32 \pm 0.07) Ev/Molecule$
- Amount of adsorbed D_2 $n(D_2) = 1.7 \times 10^{-10}$ moles
- Enthalpy release $H_r = (21.8 \pm 1.3) \mu J$

S. Veronesi

Next generation of thermometer

An issue to solve is relative to surface roughness. Atomically speaking Gold thermometer has a rough surface which do not allow atomic resolution with STM. Mica allows surface reconstruction of Gold, solving this problem.

thermometer simulation

main contribution to thermalization time:			
• Gold film $t_{Au} = d^2/\alpha \sim 4x 10^{-12} s$			
Interface gold-mica			
• Mica substrate $t_{Mica} = d^2/\alpha \sim 0.3s$			
Interface mica-holder			
Simulation	Heating	Sampling	ΔE/E
	duration	rate	
	S	ms	
1	10 ⁻⁹	300	0.53
2	10 ⁻¹	300	0.49
3	1	300	0.24
4	10	300	0.024

S. Veronesi Calorin

Next generation of thermometer

Moreover, the new sensor substrate (Mica) allows a better performance in terms of sensitivity.

Conclusions and Outlook

First direct measurement of enthalpy release during Hydrogen adsorption process

- resistance readout sensitivity \sim 0.03 $m\Omega$
- temperature variation sensitivity 10mK (Si substrate), 4mK (Mica sustrate)
- H_2 detected during adsorption $\sim 0.2 ng$ or $(1.71 \pm 0.01) \cdot 10^{-10}$ moles
- advantages:
 - calorimetric evaluation is direct and do not need H₂ desorption, while TDS need the desorption of the loaded H₂
 - in presence of a desorption barrier the calorimetric evaluation is not affected while TDS would include it
- Simultaneous investigation of energy transfer mechanisms and STM analysis on the same physical support

S. Veronesi

Calorimetry at nano-scal

Thank you for your attention

