
Università di Pisa

SCIENZE MATEMATICHE FISICHE E NATURALI

Corso di Laurea Magistrale in Fisica della Materia

Tesi di laurea magistrale:

A programmable metrological standard
based on the quantum Hall effect

Candidato:

Luigi Caputo
Relatore:

Prof. Stefano Roddaro

Relatore esterno:

Dr. Stefan Heun

Anno Accademico 2019-2020
Appello di maggio 2021



Luigi Caputo, May 2021
A programmable metrological standard based on the quantum Hall effect



CONTENTS 1

Contents

Introduction 3

1 Theory 6
1.1 2DEGs in heterostructures . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Landau levels of a 2DEG . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Metal-semiconductor contacts . . . . . . . . . . . . . . . . . . . . 14

2 Quantum Hall metrology 16
2.1 The potentiometric method . . . . . . . . . . . . . . . . . . . . . 16
2.2 Current comparators . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 QHARS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 A novel device architecture . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Single edge mixer . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Double edge mixer . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Results for the double barrier (ν = 4) . . . . . . . . . . . 22
2.4.4 Bisector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Device fabrication 27
3.1 Ohmic contacts fabrication . . . . . . . . . . . . . . . . . . . . . 27
3.2 Mesa fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Gates fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Packaging and wire bonding . . . . . . . . . . . . . . . . . . . . . 35

4 Experimental apparatus 37
4.1 The cryostat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Cooldown procedure . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Magnet operation . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Lock-in amplifier and wiring . . . . . . . . . . . . . . . . . . . . . 42

5 Experimental results 45
5.1 Check of the Ohmic contacts . . . . . . . . . . . . . . . . . . . . 45
5.2 Gates characterization . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 2DEG characterization . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Chirality check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Gate characteristics at ν = 2 . . . . . . . . . . . . . . . . . . . . 54
5.6 Gate characteristics at ν = 4 . . . . . . . . . . . . . . . . . . . . 58
5.7 Quantum Hall breakdown . . . . . . . . . . . . . . . . . . . . . . 61

6 Output resistance 69
6.1 Numerical estimate of Rout . . . . . . . . . . . . . . . . . . . . . 73
6.2 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Calculation of Rout . . . . . . . . . . . . . . . . . . . . . . 80



7 Conclusions 85
7.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Appendix A Effect of the insert filters 88

Appendix B Other Rout details 94
B.1 Non-standard values . . . . . . . . . . . . . . . . . . . . . . . . . 94
B.2 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 98



CONTENTS 3

Introduction

The Quantum Hall Effect (QHE) is the quantum limit of the Hall effect and its
main manifestation is the quantization of the Hall coefficient in high-mobility
two-dimensional electron systems, when subjected to low temperature condi-
tions and to a strong perpendicular magnetic field. This effect emerges from
the quantization of the cyclotron electron orbits into "Landau levels". The effect
was discovered by Klaus von Klitzing while working on a high purity silicon-
based MOSFET, and he observed this phenomenon in the MOSFET’s inversion
layer at liquid helium temperature and in a 15 T magnetic field [1]. Quantized
Hall conductance has found extremely useful metrological applications, since
it occurs at integer multiples of e2/h, where e is the electron charge and h is
Plank’s constant, i.e. it is a combination of two fundamental constants. Experi-
mentally, resistance measurements yield this value with an astonishing precision
(up to 12 decimal figures [2]). Starting from the so-called metrological triangle,
which involves the use of other quantum mechanical effects such as the Joseph-
son effect and single electron transport, it was considered whether it is possible
to obtain the values of h and e with metrological precision [3].

The importance of the resistance quantum value RK = h/e2 is not just con-
nected to the fundamental constants but interesting as a resistance standard
for electrical calibration. The quantum Hall resistance is equal to RH = RK/ν,
where the integer ν is called filling factor, which corresponds to the number of
filled Landau levels. Ideally, one would like to have different filling factors on
the same sample to achieve, in a single chip, different standards to calibrate re-
sistances of different orders of magnitude. Many approaches have been proposed
to achieve this goal. In particular: (i) cryogenic current comparators (CCC),
which allow current (and thus resistance) rescaling with metrological precision;
(ii) so called QHARSs (Quantum Hall Array of Resistance Standards), which
consist of a network of Hall bars yielding a rational fraction q/p of the resis-
tance RK . Both these methods are affected by limitations. The networks used
in QHARS rely on Ohmic contacts between individual Hall bars that intro-
duce measurement errors due to stray voltages, parasitic resistances or other
non-local effects [4]. Differently, CCCs typically require an additional cryogenic
system, and they can be affected by noise when trying to compare resistance
values� RK . Finally, both these methods yield a fixed resistance standard and
to obtain a different value one has to use a different QHARS or a CCC with a
different number of windings. This thesis is based on a recently-proposed QH
circuit architecture [5] that, thanks to a precise and tunable voltage bisection
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scheme, can yield any four-wire resistance of the form R = k
2n

RK

2 . The integer
n indicates the number of bisection stages whose configurations set the value
1 ≤ k ≤ 2n. While the basic working principle of this QH circuit has been
experimentally demonstrated, its ultimate precision is still unknown.

This thesis has two targets: (i) to experimentally quantify the maximum
bias voltage compatible with the QH effect, since this directly affects the top
achievable precision; (ii) to study the influence of a finite output resistance of
the QH circuit as this again affects the precision of the resistance standards
produced by the circuit. The thesis is organized as follows:

• Chapter 1. Theory
The basic theory behind the QHE and how a 2D electron gas can be
realized in a semiconductor heterostructure is illustrated.

• Chapter 2. Quantum Hall metrology
The concept of a metrological standard will be illustrated along with the
most common techniques to compare resistance values and to achieve dif-
ferent fractional values of RK using a single Hall bar or an array of Hall
bars. The working of an edge mixer will be illustrated, that is the fun-
damental building block of the actual device, which is the topic of this
thesis.

• Chapter 3. Device fabrication
In this section we report step by step the fabrication of a Hall bar device
that includes the edge mixers that have been characterized in this thesis.
The actual device has also been fabricated on the same chip, even though
not used for the measurements.

• Chapter 4. Experimental apparatus
The experimental work of this thesis has been carried out at Laboratorio
NEST of Scuola Normale Superiore in Pisa. The magneto-transport data
were obtained making use of a 3He cryostat to achieve 300 mK tempera-
ture. The basic working principle of the cryostat will be illustrated, along
with the instrumentation and the wiring of the sample.

• Chapter 5. Experimental results
In this section, the characterization of the Hall-bar device will be de-
scribed: we characterized the two dimensional electron gas, IV curves of
the edge mixers have been checked, and the Hall bar operating at ν = 2

and ν = 4, yielding different fractions of RK , has been explored.
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• Chapter 6. Output resistance
The influence of a finite output resistance on the QH circuit will be dis-
cussed, both with a numerical and an analytical approach. This con-
tributes to an understanding of the precision achievable with this kind of
devices.
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1
Theory

This chapter is devoted to summarize physical concepts useful later on: trans-
port, the (integer quantum) Hall effect, and two-dimensional electron gases
(2DEGs).

1.1 2DEGs in heterostructures

For our purpouse, a GaAs/AlGaAs heterojunction is illustrated in Fig. 1, that is
formed upon contact of undoped GaAs and n-doped AlGaAs. When in contact,

Figure 1: GaAs/AlGaAs heterojunction

the Fermi energies of the two materials align to equilibrate the carrier densities,
but the bands bend to mantain ∆Ec and ∆Ev (the difference in conduction and
valence band energy in the two materials) constant at the junction, following
the Anderson rule [6].

From Fig. 1 we see that a 2D electron gas (2DEG) is formed at the junction,
where the electrons are confined in the growth direction of the heterostructure
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by the band potential and are free to move on the junction plane.

1.2 The Hall effect

It is useful to make a brief recap of the classical Hall effect. Fig. 2 is taken as a
reference, where the square represents a 2D metallic slab.

In general, we have:
~J = σ ~E, (1.1)

where ~J is the current density, ~E is the electric field given by (V/L, 0, 0), and
σ the conductivity tensor. In the case B = 0, the conductivity is diagonal for
isotropic materials and VH = 0, and the conductance is in general ρ = σ−1.
In the case ~B = Bẑ, σ is a non diagonal tensor, because we have build-up of
opposite charges on the sides of the sample, so that a potential drop VH = EyW

along W will develop.
~J = (Jx, Jy) (1.2)

~E = (Ex, Ey) (1.3)

Figure 2: Hall slab with reference frame. V is a voltage generator, VH is a
voltmeter.

The 2D conductivity has the form:

σ =

(
σxx σxy

σyx σyy

)
. (1.4)

Now we want to find ρxx, ρxy and the associated Hall resistance RH . To do
it, we solve the equation of motion for one electron in steady state using the
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Drude theory:

~̇p = −e( ~E + ~v × ~B)− ~p

τ
, (1.5)

where τ is the electron relaxation time. At steady state we have ~̇p = 0 and

~v = − eτ
m∗ ( ~E + ~v × ~B), (1.6)

where µe = −eτ/m∗ is the mobility. By definition ~J = n(−e)~v and so we can
write

~J =
ne2τ

m∗ ( ~E −
~J

ne
× ~B) (1.7)

And so:
~E =

m∗

ne2τ
~J + ~J ×

~B

ne
. (1.8)

Since ~B = Bẑ and considering ~E and ~J components we get:

~E = ρ ~J =

(
m∗

neτ
B
ne

− B
ne

m∗

neτ

)
~J. (1.9)

Note that ρxx = ρyy (isotropy) and ρxy = −ρyx (sign of VH). From Eq. (1.9):

ρxy =
B

en
(1.10)

ρxx =
m∗

τe2n
(1.11)

RH ≡
ρyx
B

= − 1

en
. (1.12)

In case we have a semiconductor, this approach is valid as long as we assume
a single band and type of carriers present [6], and the mass m has been replaced
by the effective band mass m∗.

1.3 Landau levels of a 2DEG

Now the quantum mechanical problem of an electron in a two dimensional elec-
tron gas in an external magnetic field is treated. This two dimensional electron
gas is formed at the junction of our GaAs/AlGaAs heterostructure.

We write the Hamiltonian minimally coupled with a magnetic field ~B =

(0, 0, B) represented by the vector potential ~A = (−yB, 0, 0) in the Landau
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gauge.

H =
(px − e

cyB)2

2m
+

p2
y

2m
(1.13)

Since the problem is translationally invariant along x, we can look for solution
of the form ψ = eikxφ(y). Expanding the terms we can rewrite Eq. (1.13) in
the form of Eq. (1.14).

H =
p2
y

2m
+

1

2
mω2

c (y − y0)2, (1.14)

where y0 = ~kx
eB , ωc = eB

m is the cyclotron frequency, and l =
√

~
eB the magnetic

length. The Hamiltonian in Eq. (1.14) is the same as a harmonic oscillator, then
its eigenvalues are:

Enkx =

(
n+

1

2

)
~ωc. (1.15)

From the form of the Hamiltonian in Eq. (1.14), we can see that the elec-
trons move freely along x and they oscillate inside a strip of magnetic length
l along y, thus in the wave equation ψ = eikxφ(y), φ(y) is the 1D harmonic
oscillator eigenvalue and so we can say that px = ~kx. It is important to remind
to substitute the mass m with the effective band mass m∗ = 0.067me of an
electron in a 2DEG of a GaAs/AlGaAs heterostructure. In a 2DEG, electrons
are confined along z and free in the xy plane.

Let us now calculate the 2D density of states in the case B = 0 (DOS(E, 0))
and B 6= 0 (DOS(E,B)).

DOS(E) =
∑
k

δ(E(k)− E) ≈
∫
δ(E(k)− E)

Sd2k

(2π)2
(1.16)

DOS(E, 0) =

∫
δ(
~2k2

x + ~2k2
y

2m
− E)

Sd2k

(2π)2
=

S

2π

m

~2
(1.17)

The DOS(E, 0) is then constant in energy. When B 6= 0, we no longer have a
dispersion in k, so we have atomic-like levels, and the number of states previ-
ously between those levels are "squashed" inside the discrete levels making them
degenerate. As shown in Fig. 3, we have then a DOS that is a series of delta
functions with

∑
nNLδ(E − Enkx), where NL is the degeneracy of the Landau

levels.
NL is given by the maximum extension of the harmonic oscillator, i.e. y0 =

W from which we find kmaxx and the kx is quantized in units of 2π/L for periodic
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Figure 3: Levels and DOS in absence and presence of a magnetic field.

boundary conditions along x, then:

NL = kmaxx

L

2π
=
eBS

h
=
φ(B)

φ0
= D0~ωc, (1.18)

where NL is also the maximum number of states going inside one of the states
in D0 = DOS(E, 0), φ(B) is the magnetic flux B · S and φ0 = hc/e is the
elementary flux quantum. The states are the ones between two discrete levels
i.e. in the energy interval ∆E = ~ωc and that is equal to D0~ωc.

The number of filled Landau levels is given by:

ν =
N

NL
=

N
φ(B)
φ0

=
n~
eB

. (1.19)

The part of ν exceeding its integer part is the filling fraction of the last partially
populated Landau level.

1.4 The quantum Hall effect

In this section the quantum Hall effect is illustrated, in particular the integer
quantum Hall effect that is of relevance for our purpose.
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According to Eq. (1.12) and Eq. (1.19) we can write:

ρxy =
ehB

nche2
=

1

ν

h

e2
, (1.20)

where ν is an integer. We will explain the physical meaning of Eq. (1.20),
according to the results of the previous section. The quantization into Landau
levels also affects ρxx: now ρxx = ρxx(B). Fig. 4 shows the profiles of the two
resistivities vs B, and the blue steps are described by Eq. (1.20).

Figure 4: Integer Quantum Hall Effect.

Reminding that NL ∝ B, so varying B, the occupation of the Landau levels
also changes, and consequently EF changes. Now, let us consider a defect-free
finite sample. If EF falls between the Landau levels, this means that all the
levels with E < EF are fully occupied and so the conduction of electrons cannot
occur in the bulk of the sample because there is an energy gap and the bands
shown in Fig. 5 are flat and no hole-electron excitation can occur at low T . If
EF happens to be equal to one of these Landau levels, the conduction can occur
in the bulk of the sample, since the Landau level EF will not be fully occupied,
and we will have a spike in ρxx. Since the sample is of finite size, we have for
the electrons a confining potential at the edges (Fig. 5) that can cross EF if EF
falls between Landau levels: in this manner the conduction only occurs at the
edge of the sample.

Because all the conduction electrons freely flow on the edge with the same
chemical potential (here Fermi energy for simplicity sake), the longitudinal
potential drop is zero and so ρxx = 0. These oscillations in ρxx are called
Shubnikov-de Haas (SdH) oscillations (red curve in Fig. 4).

With a finite slab, just its edges introduce a defect and actually thanks to
defects we can measure the plateaus in ρxy when EF lies between levels. Fig. 6
shows that the introduction of defects modifies the density of states so that it
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Figure 5: Energy levels of a finite defect-free sample, along x.

is finite between levels and the deltas are broadened and the degeneracy lifted.
ρxy depends only on ν and so it stays the same for EF between levels, to then
going to another value when EF crosses a Landau level. The steps seen in ρxy
are now sharper and wider. The dependence of ν with EF is shown in Fig. 7.

Figure 6: a) Density of states in absence of defects, b) density of states in
presence of defects.

If there are bulk impurities, thus producing a local potential that can inter-
sect EF , currents can flow around defects forming the so-called localized states.
These states are current loops that do not interfere with electron transport from
one end of the sample to the other.

In the classical picture visible in Fig. 8 the electron orbits near the edges
cannot fully close and so the electrons bounce and the net effect is current at
edges of the material, the number of current edges is given by the filling factor
ν.

If we also include the electron spin interaction with the magnetic field, each
Landau level splits into two, separated by BµB , where µB is the Bohr magneton,
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Figure 7: Edge currents with varying EF (between ν = 1 and ν = 2) in a finite
sample.

Figure 8: Edge states due to the finite size of the sample (skipping orbits).

like Fig. 9 that shows the Zeeman of the first Landau level. Right moving
currents travel on the upper edge and left moving on lower edge, as in Fig. 8.
At equilibrium V = 0 the currents cancel.

Considering T � ~ωc (which is close to our temperature range for the ex-
periment) and a finite V , we can find the resistance of one current edge.

µR − µL = (−e)V (1.21)

I = (−e)
∫ kR

kL

vx(k)
dk

2π
=

e2

2π~

∫ µR

µL

dE(k) =
e2

h
V (1.22)

R1edge =
V

I
=

h

e2
= RK (1.23)

The number of Landau levels intersected by the chemical potential µR for right
moving channels and µL for left moving channels, gives the filling factor ν and
the number of current edges, so in general I = ν e

2

h V and so RH = RK/ν where
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Figure 9: Out of equilibrium (V = µR − µL 6= 0) levels of the finite sample
(ν = 2) with a confining potential (finiteness of the sample) and filled up to the
chemical potentials.

RK ≈ 25.8 kΩ is the von Klitzing constant. In general RH = RK

ν regardless of
the form of the confining potential. What is important is how many Landau
levels the chemical potential intersects.

The states at the border of the sample are chiral (vx = ∂E(k)
~k has opposite

sign on the two edges) and do not mix in the bulk if W is sufficiently wide
(generally W � l). Real samples also contain bulk impurities that develop
current edges too, so there must be as few as possible to avoid mixing edges and
maintain chirality (in our Drude picture τωc � 1, so high magnetic fields and
low temperatures help).

For B → 0 we recover the classical value for ρxx and ρxy.

1.5 Metal-semiconductor contacts

In metrological measurements, contacts are a critical issue. The resistance stan-
dard must not be affected by the contact resistance and then they must be
reliable and resilient to thermal cycles between room temperature and cryo-
genic temperatures. In general it is possible to classify two types of metal-
semiconductor contacts: As in Fig. 10, Ohmic contacts and Schottky contacts.
The first type has Ohmic I − V characteristics and is achieved when the semi-
conductor conduction band bends to form a thin barrier at the junction with
the metal. We need this contact to measure voltages and current flow in our
2DEG device, as electrons can easlity tunnel the barrier. Schottky contacts are
achieved when a wider barrier is formed and are useful to obtain a potential
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Figure 10: a) Ohmic contact, b) Schottky contact.

barrier and block the electron flow through the contact.
In our case field effect is achieved by creating a gating structure composed

superficially by this last type of contact plus a first layer of a dielectric insulator.
The gating is used to modify EF at equilibrium or the electron density in our
2DEG so we can control the filling factor ν in chosen regions of the sample
(Fig.11). Ohmic contacts are achieved via annealing of the metal deposited on

Figure 11: Example of a Schottky contact on a hetero-junction.

the heterostructure, which strongly n-dopes the junction with the layers of the
hetero-structure and thins the Schottky barrier (see chapter 3). An illustration
of the contacts is in Fig. 12.

Figure 12: Device contacts.

Such contacts can have a resistivity as low as ρc ∼ 10−6 Ω× cm2 [7, 8]. The
best alloy that do not deteriorate over time was found to be AuGeNi.
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2
Quantum Hall metrology

This chapter is devoted to expose the methods used to compare a metrological
resistance standard to other resistances. Common metrological standards will be
discussed, along with their drawbacks compared to the novel device illustrated
in the thesis.

2.1 The potentiometric method

The easiest way to compare a generic resistance with a Hall resistance is through
the potentiometric method. We now describe what is shown in Fig. 13.

Figure 13: Potentiometric method [2]

An Hall bar is put in series with a resistance Rs to be compared, and a
current is injected with a DC current (I) generator. One of the two transversal
terminals to measure RH on the Hall bar, a high impedence voltage detector
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in series with RH is attached. The circuit with RH is closed with another DC
current (I) generator in parallel with a potentiometer RP that sets the voltage
VP across this other current generator. With the usage of the high impedance
detector, RP is set so that VP = VH , and so D = 0 (balance condition). Now the
circuit including the detector and the generator in parallel with RP , is moved
across the resistance RS and the detector measures VS − VP = VS − VH =

(RS − RK)I, if this quantity is zero then RS = RK , otherwise the detector is
not balanced.

Multiple measurements are performed, for example changing the sign of I,
in order to lower the uncertainty due to the instability of the current generators.

2.2 Current comparators

Instead of comparing voltages we can compare currents.

Figure 14: Current comparator. Zero flux is achieved when NSIS = NP IP [2]

As in Fig. 14, a feedback system adjusts the current through RS and an
inductance in series, so to achieve a zero flux condition NSIS = NP IP through a
magnetometer mutually coupled with this inductance and another inductance in
series with RP in a separated circuit. Adjusting the winding number of this last
inductance so that the same voltage is applied across RS and RP (the detector
shown in Fig. 14 is balanced) we have ISRS = IPRP . Thus RP /RS = NP /NS ,
so it is possible to quantify generic resistances with one another.

The accuracy of this method can be improved by using a SQUID as a magne-
tometer, as shown in Fig. 15, realizing a so-called cryogenic current comparator
or CCC for short.
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Figure 15: Cryogenic current comparator that uses a potentiometer to achieve
the detector balance [2].

2.3 QHARS

When two resistances to be compared are very different from each other (for ex-
ample 100 Ω and RK ≈ 25.8 kΩ), the methods illustrated lose precision because
more significant digits need to be taken into account when measuring RP /RS ,
or the electrical noise becomes more prominent. We then would like a reliable
resistance standard customizable in order of magnitude.

More conventional metrological standards of this kind are the so called
QHARS. These devices consist in a series of Hall bars with equal filling factor.
The connection between them determine for the terminals injecting a known
current I, a potential difference that gives R = q’RK , where q’ is the coeffi-
cient of effective resistance (CER) that depends on the wiring topology and is
a rational fraction. For example, like in Fig. 16, to obtain a resistance value of
the form R = RK/2

n you can imagine putting 2n Hall bars at ν = 2 in series
with each other, and all in parallel with the current generator I. The connec-
tions in QHARS introduce stray resistances, but by increasing the number of
connections between pairs of bars they overall vanish according to Eq. 2.1 [9,
10], where α is the number of connections between two Hall bars and ε < 1 is
a weight factor accounting for the significance of the correction to Rtot due to
these stray resistances.

Rtot = R+ εαRstray (2.1)

It is also possible to short edge contacts on a single Hall bar to then measure
R with two voltage probes as shown in Fig.17 [11]. It was seen by solving the
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Figure 16: Example of a QHARS. Voltage drops across different gray floating
contacts yields different fractions of RK (4-wire resistance).

node equations (next section will provide details) that R = q
pRk is obtained and

was determined that 2n connections give a q = 1...n and a p = 1...n.

Figure 17: Single hall bars with various shorts on their edge contacts. RQ is a
fraction of RK .

2.4 A novel device architecture

This section explains the working of the novel metrological device [5]. To do
this we first illustrate the effect on the edge potential drops for a Hall bar with
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different ν on the bulk, achieved with a gating system. We show that we can
obtain various fractions of RK , that we explicitly calculate and that will be
useful for comparison with the measurements. Finally we illustrate the novel
metrological device called bisector.

2.4.1 Single edge mixer

Figure 18: One Hall barrier (clockwise chirality).

Figure 19: One Hall barrier (anticlockwise chirality).

The fundamental element of our device consists in two regions with ν = 2

separated by a ν = 1 region or "barrier" that can be switched to ν = 2 with
a gating system. When the barrier is in the ν = 1 state, this element acts like
a voltage bisector, since the barrier reflects one edge channel as, illustrated in
Fig. 18 and Fig. 19.

We discuss now voltage drop values that we expect along and across the
single barrier according to the Landauer-Büttiker theory [12], i.e. from a contact
at voltage V originates an edge current with each edge carrying a current I =

V/RK . The voltage drops for this kind of devices can be then calculated by
writing the current conservation equation at each contact. Using Fig. 19 as a
reference (bar at ν = 2) and setting Va = 0 so to bias the bar with Vd voltage,
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we expect to measure along the bar and across the barrier a voltage drop Vd/2,
the same value is found along the barrier. Vd value is found on one diagonal
of the bar and on the other diagonal we have a zero voltage drop. If we have
ν = 2 under the barrier, we find a zero voltage drop along the bar, Vd on both
diagonals and along the barrier. If we have ν = 0 (pinch-off) under the barrier,
we find Vd voltage drop along the bar and on both diagonals, along the barrier
we find a zero voltage drop. The sign of the voltage drops depend on the order
of the voltage probes.

In this way we have achieved a bisection scheme that allows to measure the
fraction Vd/2I = RK/2 across the barrier.

2.4.2 Double edge mixer

Figure 20: Two barriers at ν = 1 with counter clock-wise chirality. The bar is
biased with voltage Vb.

Now we study the case with two barriers at ν = 1 as in Fig. 20. We can
calculate the voltage we expect to find on the diagonal and on the two bottom
contacts across the two barriers, by solving the following system of equations
that comes from solving the node equations for the currents entering or leaving
each contact: x = Vb

2 + z
2

y = z = w
2 .

.

From these equations we find: y − x = −Vb

3 and Vb − y = 2Vb

3 , respectively the
\ diagonal voltage drop and the longitudinal voltage drop. For both barriers
in pinch-off or at ν = 2 we have the same value we would measure on a single
barrier.
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By adding another barrier we have increased the number of fractions of RK
we can achieve.

2.4.3 Results for the double barrier (ν = 4)

For the Hall bar at ν = 4, we have a larger plethora of voltage drop values, all
of them can be calculated as in the previous section. We report here two tables,
one for bottom longitudinal voltage drop and for the \ diagonal that will be
useful for the thesis later. Left and right gate refers to Fig. 20.

Left gate ν
Right gate ν 1 2 3 4

1 6/7 4/5 10/13 3/4
2 4/5 2/3 4/7 1/2
3 10/13 4/7 2/5 1/4
4 3/4 1/2 1/4 0

Table 1: Bottom longitudinal voltage drop in unit of Vb.

Left gate ν
Right gate ν 1 2 3 4

1 -5/7 -3/5 -7/13 -1/2
2 -3/5 -1/3 -1/7 0
3 -7/13 -1/7 1/5 1/2
4 -1/2 0 1/2 1

Table 2: \ Diagonal voltage values in voltage bias unit.

2.4.4 Bisector

It is useful to illustrate the equivalence of the single barrier scheme in Fig. 21(a-
b) to the scheme shown in Fig. 21(c-d). We assume to be working at field values
giving ν = 2. In fact if one writes down the node equations for this alternative
configuration and solves for VTL, VTR, VBL and VBR, the same relations as the
single barrier will be found:

VE5 = VE6 = (VTL + VE4)/2

VE4 = VTR = (VE6 + VE2)/2

VBL = VE3 = (VE5 + VE1)/2

VE1 = VE2 = (VE3 + VBR)/2

.
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Figure 21: Useful equivalence.

.
Now we have all the ingredients to describe the whole device. If we take

Fig. 21(c) and change the topography of the barriers like in Fig. 22, in particular
we move one of the two lower barriers on the side, we obtain a stackable element
(stage) with upper side contacts VR,n and VL,n and so at the bottom side con-
tacts VR,n+1 = (VR,n +VL,n)/2 and VL,n+1 = VL,n or VR,n+1 = (VR,n +VL,n)/2

and VL,n+1 = VL,n depending on which barrier is moved upward. Contacts on
the same edge and not separated by a barrier can be fused together. Follow-
ing this logic we can fabricate two gates in the position of both configurations:
these two gates are switchable to ν = 2 or ν = 1 with an applied potential, so
we obtain multiple configurations on a single device. Right barrier at ν = 1

and left barrier at ν = 2 correspond to configuration 1 and the opposite to
configuration 0, we will call other combinations "non-standard". Stacking n

stages, 2n standard configurations are possible, we will now study the value of
VL,n+1 and VR,n+1 as a function of the lateral barriers configuration. Defining
∆Vn = VR,n − VL,n we can rewrite for configuration 1 of the n-th stage:

VL,n+1 = VL,n +
∆Vn

2
(2.2)

VR,n+1 = VR,n (2.3)

For configuration 0:

VR,n+1 = VR,n −
∆Vn

2
(2.4)

VL,n+1 = VL,n. (2.5)

For both configurations ∆Vn+1 = ∆Vn/2. If we introduce the binary digit cn+1
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Figure 22: Topography change of a single barrier.

to indicate the configuration of the (n+ 1)-th stage:

VL,n+1 = VL,n + cn+1∆Vn+1 (2.6)

VR,n+1 = VL,n+1 + ∆Vn+1. (2.7)

If we iteratively apply Eq. (2.6) and Eq. (2.7) to the initial stage with upper
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contacts VL,0 and VR,0:

VL,n = VL,0 +

n∑
i=1

ci
∆V0

2i
= VL,0 +

n∑
i=1

ci2
n−i∆V0

2n
= VL,0 + (k − 1)

∆V0

2n
(2.8)

VR,n = VL,0 + k
∆V0

2n
, (2.9)

where k is the decimal representation of the binary digits ci and runs from 1
to 2n. If we inject a current I through VR0 and VL0 setting VR0 = 0, using the
Landauer-Büttiker formalism [12], we find ∆V0 = I RK

2 and thus:

Ṽ

I
=
VR,n − VL,0

I
=
RK
2

k

2n
. (2.10)

We have then obtained a reprogrammable resistance value R = RK

2
k
2n for

metrological purposes that can be measured with a four-probe technique as
shown in Fig. 23.

I

Ṽ

Figure 23: Stacked stages and four-probe measurement.

It must be said that the mixing of the edge channels, operated by the gates of
a real device, may create channels with different chemical potentials, but these
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last ones are equilibrated by the presence of intermediate Ohmic contacts [13,
14] between adjancent barriers.

The advantage of our novel device consists in the fact that its elements
scale linearly with n and no internal Ohmic contacts are needed, so they do not
contribute to perturb the output resistance standard (in the last chapter we will
discuss what it does and how) and the customizable values are more numerous
compared to a QHARs with the same number of elements.
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3
Device fabrication

This chapter explains the fabrication of the novel metrological device [5].
The device chip is a GaAs/AlGaAs heterostructure grown at the Weizmann

institute. We have at our disposal 1/4 of wafer with the specifics given in
Table 3. The range of values for the doping (’n’) in Tab.3 refers to a carrier

n (3.0÷ 3.9)× 1011 cm−2

µ (7.2× 103 ÷ 5.0× 106) cm2/Vs

2DEG depth 670Å

Table 3: Some fabrication parameters.

density measurement at T = 300 K (lower value) and at T = 4 K (higher value),
furthermore ’n’ increases with the presence of ambient light and decreases in its
absence (persistent photoconductivity). The same goes for the mobility µ.

The wafer is cut with a diamond tip and applying pressure on the opposite
side of the cut, a chip is made by making it slide along one of the crystalline
planes. The wafer portions used are illustrated in Fig. 24.

3.1 Ohmic contacts fabrication

Before proceeding with the actual device contact fabrication, we fabricated a
series of Ohmic contacts on the test chip in Fig. 24. Each of the contacts
undergoes a current annealing procedure with various current values (11.0, 11.5

and 12.0 A), the best current value was found to be 11.5 A. At a temperature
of T = 2.5 K, we measure the contact resistances and it turns out that they are
negligible with respect to the 100 Ω line resistance of the cryostat.
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Figure 24: Wafer.

Then we proceed with the fabrication of the actual device. Two chips are
made, each contains 4 nominally identical copies of a 4 stage bisector and two
Hall bars with gate electrodes (or edge mixers). The Hall bar devices permit to
study the behaviour of two individual beam splitters (gates) and to verify the
basic transport properties of the heterostructure, that, after all the fabrication
process, could result degraded.

We start by cleaning the obtained chips via the following procedure:

1. 50 ◦C Acetone for 5 mins

2. Isopropanol for 30 seconds

3. Drying with inert gas N2

The first two steps use polar solvents and are useful to remove organic and non-
organic impurities. Acetone tends to leave residues after evaporation (e.g. its
oligomers), so isopropanol is used as an additional washing agent. The choice of
the solvents has been dictated by their relative non-toxicity to other compounds
used for the same purpose. The inert gas clearly prevents the formation of
unwanted oxides.

From now on we continue with the Ohmic contact lithography. The following
is the procedure used:

1. Prebaking at 120 ◦C for 60 seconds

2. Application of S1813 positive resist with 4000 rpm spinner for 60 seconds

3. Baking at 90 ◦C for 60 seconds (removal of the resist solvent)

4. Laserwriter exposure with dose 90 mJ/cm2 and objective x5 (2µm resolu-
tion)
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5. Bath in MF319 developer for 60 seconds (from data sheet)

6. Washing in deionized water (DIW)

7. Drying with N2

Prebaking is needed to get rid of possible humidity residues. The resist thickness
can be found from Fig. 25 (from the resist datasheet) and from this it is possible
to determine the energy dose of the laserwriter (Fig. 26) ∼ 90 mJ/cm2 (values for
a 436 nm wavelength). The contact pattern to transfer on the resist is shown
in Fig. 27. A pre-etching is performed so that the resist-free zones of the

Figure 25: Spinner speed vs resist thickness. For 4000 rpm, we read about
1.4µm of thickness.

semiconductor are engraved a bit. In this way the metallic contact will diffuse
better inside the semiconductor during the annealing process.

1. Etching with H3PO:H2O2:H2O (3:1:40) for 30 (chip 1) and 60 (chip 2)
seconds (etch rate is about 100 nm/min).

2. Washing in DIW

3. Drying with N2

The metal used is a NiAuGe multilayer and is deposited with a thermal evapo-
rator from Sistec (Fig. 28). We proceed according to the following scheme:
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Figure 26: Energy flux to completely expose the resist. The wave-like profile is
due to the fact that for a certain thickness stationary waves are formed inside
the resist and in this way the radiation is trapped inside the resist for longer
times [15].

1. Chamber evacuation, down to P < 10−5 mbar.

2. Ni evaporation. 10 nm thickness, rate 1Å/sec.

3. Eutectic AuGe 88:12 evaporation. 200 nm thickness, rate 2− 3Å/sec.

4. Ni evaporation. 10 nm thickness, rate 1Å/sec.

5. Au evaporation. 100 nm thickness, rate 2Å/sec.

6. Hot acetone (50 ◦C) based lift-off for 10 min (cyclically repeated process
untill all the excess metal is completely removed).

7. Drying with N2.

When the lift-off is difficult to perform (for example when the metal thickness
is as big as in this case), it is possible to make use of an ultrasound bath or a
syringe.

Now we can proceed with the current annealing. The annealing process
makes so that, increasing the metal temperature, it diffuses inside the semicon-
ductor and via segregation Germanium partially substitutes Gallium. The for-
mer has one more electron in its outer shell than the latter, effectively strongly
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Figure 27: Ohmic contact pattern.

doping the semiconductor underneath; this phenomenon occurs in a 350 ◦C-
450 ◦C temperature window. The result is a metal-n++ junction, that is effec-
tively an Ohmic contact due to the extremely thin Schottky barrier, through
which electrons can easily tunnel.

1. Power supply calibration at 11.5Å.

2. Sample mounting.

3. Evacuating the chamber via a membrane pump.

4. Flux of N2 at 0.5 l/min.

5. Annealing with 11.5Å for 60 seconds.

6. Vent with N2.

The choice of the annealing current was made based on the earlier tests done on
the tests contacts, given the fact that the current-temperature conversion is not
reliable because it strongly depends on the materials upon which the annealing
is performed (according to previous calibrations here it should correspond to
450 ◦C).
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Figure 28: Evaporator with vacuum chamber.

3.2 Mesa fabrication

In an similar fashion to the contact lithography, the mesa lithography is per-
formed with pattern in Fig. 29. The mesa is the region of the chip that contains
the 2DEG that is etched away in other parts. The Hall current will flow on its
boundary.

1. Prebake at 120 ◦C for 60 seconds to remove humidity.

2. S1805 spinning at 4000 rpm for 60 seconds

3. Bake at 90 ◦C for 60 seconds

4. Laserwriter with dose 90 mJ/cm2 and objective x5 (2µm resolution)

5. MF319 developer 60 seconds

6. Stop (generous) in deionazed water (DIW)

7. Drying with N2

Then the etching process:

1. Etching with H3PO:H2O2:H2O (3:1:40) for and 60 seconds.

2. Drying in DIW.

3. Drying in N2.

The Ohmic contacts are fabricated before the mesa because the mesa etching
can contaminate the surface and thus affect contact fabrication process.
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Figure 29: Mesa pattern.

3.3 Gates fabrication

Finally we proceed to make the gate electrodes with pattern shown in Fig. 30,
in this case they will be Schottky contacts (so no annealing is performed). In
this case a different recipe is used because we need a resist underetch, so that
we can have a good lift-off.

The process described is needed to harden the uppermost part of the resist,
so that the inferior part will be removed much easier during the development
process, creating in this way an underetching.

1. Prebake at 120 ◦C for 60 sec to remove humidity.

2. S1805 spinning at 4000 rpm for 60 seconds.

3. Bake at 90 ◦C for 60 seconds.

4. Predevelopment in MF319 for 120 seconds.

5. Bake at 120 ◦C for 120 seconds.

6. Laserwriter with dose 90 mJ/cm2 and x5 objective (2µm resolution).

7. Development in MF319 for 4 minutes.

8. Stop (generous) in DIW.

9. Drying with N2.
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Figure 30: Gates pattern.

The evaporation has been made with a different kind of evaporator from
Kurt-Lesker, simply because aluminium metal is not nominally present as a
source for the Sistec evap.

1. Pumping out air up to P < 10−5 mbar.

2. Al evap. 50 nm thickness, rate 2Å/sec.

3. Lift-off with hot acetone (50 ◦C) for 10 minutes.

4. Isopropanol for 30 seconds.

5. Drying with N2.

Using aluminium induces less disorder in the electronic system with respect
to other alternatives such as Ti/Au [16]. It should be noted that to make a
gold gate we also need to employ some kind of bonding material (e.g. titanium,
other alternatives includes Cr and Ni but here are of no use, since they are
magnetic) because gold would not stick very well. Instead aluminium is typically
quite self-adhesive already. It is interesting to note that Al transitions to its
superconducting state at a temperature of 1 K and superconductors are known
to be poor heat conductors, so one might have efficiency problems in the cool
down of the sample. The problem is solved by applying an external critical
magnetic field; for Al this is ∼ 0.01T , the device will operate for field values
well above this.

The complete pattern is shown in Fig. 31.
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Figure 31: The complete pattern.

3.4 Packaging and wire bonding

The chip is mounted on a 16 dual-in-line chipcarrier shown in Fig. 32, com-
patible with the cryogenic setups available at NEST. The sample is glued to

1 8

916

1

2
3 4

Figure 32: Hall bar chip carrier.

the chipcarrier die with some PMMA. Thermally speaking this is not ideal, but
these samples cool down mostly via the bonding wires, so it does not matter so
much.

We then bond the gold wires to the chip contacts and to the chip carrier
contacts (Fig. 33). From Fig. 34 is possible to see what the bonder tip looks
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Figure 33: Photo from the bonder microscope.

like: this kind of bonder is called wedge bonder. We have a hole through which
the gold wire is held in place and pressed onto the surface. The machine uses
ultrasound vibration on the tip simultaneously applying a certain pressure so
the gold is made more malleable. Also a hot plate, on which the sample is
placed, is used. All the parameters relevant to this process are empirical and
substrate dependent. During this process the wire is held in place by a clamp
on the back of the tip. Then we perform the other bond by releasing the clamp
and positioning the tip over the second contact. With the gold wire still pressed
and bonded against the contact and the clamp still clenched, the tip is quickly
moved away from the contact: in this way the wire breaks at the bonding point.

Figure 34: Bonder tip

The final result is shown in Fig. 35.

Figure 35: Bonded Hall bar device inside the chip carrier.
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4
Experimental apparatus

In this chapter we make an overview of the instrumentation used in the mea-
surements. The latter were performed at the magneto-transport lab in NEST.
The device is placed inside a 3He cryostat that can reach temperatures between
250 mK and 300 mK. Then the instrumentation to perform voltage and cur-
rent measurements is attached to the contacts coming from the cryostat lines
connected to the sample contacts.

Figure 36: Magneto-transport lab in NEST. N2 refilling process is visible.

4.1 The cryostat

The cryostat used in the experiment is a Heliox from Oxford Instruments and
as said before it is a 3He cryostat. This kind of apparatus is composed of two
parts, the insert system and the dewar, and actually works with three gases:
3He, 4He and N2. The dewar is a tank composed of two intercalated shells. The
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inner one contains liquid 4He gas at a temperature of 4.2 K and can be refilled
from an external filling part (helium transfer process, shown in Fig. 37). This
part is enclosed by a jacket with a 10−6 mbar vacuum. The outer one is a liquid-
N2-refillable shell that further insulates the inner portions from the blackbody
radiation of the environment. The N2 tank is also surrounded by jacket with
a 10−6 mbar vacuum too. The N2 is loaded in the tank via another filling part
on top of the dewar. These filling parts are not sealed, otherwise the whole
setup would explode from the pressure buildup. The internal liquid 4He that
evaporates is partially recovered with a pipeline that goes to a condenser that
liquifies the gas again in another tank which is used for the helium transfer once
the cryostat dewar is almost empty, while the inexpensive N2 is simply lost.

Figure 37: Helium transfer process.

The cryostat dewar is placed in a pit under the floor and is loaded from
the top with the insert system. At the bottom of this system there is a sample
holder, visible in Fig. 38, from where connection wires from the sample contacts
depart. These lines are filtered (see appendix A for details).

The sample is in thermal contact with an upper section that is the hollow
sealed stick shown in Fig. 39, kept at low pressure (about 10−6 mbar). On the
outer side of the stick, at a certain height, there is another hollow section in
thermal contact with the inner stick, this section is called 1K pot (see Fig. 42),
the reason for this name will be clear in a while. Once the sample is attached,
a lid is put on it that tightly seals (Fig. 40), so that vacuum can be performed
in the insert system: before bringing down the insert system inside the tank
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Figure 38: Insert system sample holder. The printed board before the white
teflon tape are the filters.

Figure 39: Insert system sketch.

Figure 40: Bottom part of the insert system, covered.

we perform a 10−6 mbar vacuum using a turbomolecular pump as in Fig. 41.
Then we fill it with some 4He gas: this will act as a heat exchange gas. 4He is
continuously fluxed through the 1 K pot section with a small tube connected to
the lab piping system, so to prevent the formation of ice from water vapour.
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Figure 41: A turbo pump works with rotor blades forcing gas molecules to move
in a certain direction (towards a scroll pump for example).

Now the whole setup is ready to be inserted inside the dewar tank.

4.1.1 Cooldown procedure

Figure 42: Illustration of the condensation (a) and cooldown phase (b).

Once the insert system is inside the tank the temperature of the sample
lowers to 4.2 K as the device thermalizes with the 4He bath and this is helped
by the exchange gas.

To further lower the temperature and reach the 300 mK range we need to
perform the following procedure, also illustrated in Fig. 42. Inside the central
hollow stick, on the upper part, there is a set of active charcoals filled with 3He
gas that is fully retained when the charcoals are kept at temperatures lower
than 30 K. 3He gas, in contrary to other gasses used, cannot escape the system
since it is very expensive and must be recycled during the process. We start
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by pumping on the 4He in the 1 K pot with a the scroll pump, whose working
principle is illustrated in Fig. 43, backed by a turbo pump. The helium in the

Figure 43: Basic working principle of a scroll pump.

1 K pot is replenished by the capillary visible in Fig. 44 on the bottom of the
insert, that sucks it from the helium bath. The temperature of the 1 K pot

Figure 44: Bottom part of the insert system, still uncovered. The floating metal
rod on the right is the capillary.

drops below 2 K due to evaporative cooling. The process is controlled by an
integrated thermometer, furthermore the apparatus has also a thermometer for
the 3He pot (the bottom part of the cold finger in thermal contact with the
sample) and a thermometer for the charcoals. At this point the temperature of
the charcoals is slowly raised via an integrated heater until it reaches 30 K. The
charcoals release the 3He that fills the insert. The 3He gas is now in thermal
contact with the 1 K pot and condenses at the bottom of the insert (in the
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3He pot) in about 30 minutes. We now stop the heater and the charcoals cool
down, reabsorbing the remaining 3He gas so to effectively reduce the vapour
pressure on top of the liquid 3He. The latter again cools via evaporative cooling
and since it has a greater equilibrium vapour pressure than 4He, it can reach
temperatures below that of 4He at the same conditions.

The minimum temperatures reachable with this setup are in the range of
250− 300 mK.

4.1.2 Magnet operation

The tank of the cryostat has a built-in superconducting magnet coil that is
cooled by the liquid helium present.

The magnetic field is controlled by a current generator controlled externally.
Due to the superconducting nature of the magnet, it is possible, once the desired
magnetic field value is reached, to disconnect the current generator and let the
current flow by itself in the metallic core: this is called persistent mode. To do
this a persistent switch is used: when heat is applied, it connects the generator
to the magnet. To reconnect the generator it is important to bring it to a current
value equal to the one circulating the magnet in persistent mode.

4.2 Lock-in amplifier and wiring

To perform voltage and current measurements, three Stanford Research Systems
SR830 lock-in amplifiers have been used. All lock-ins share the same frequency
reference.

Fig. 45 shows that the Hall bar contacts are reached through a contact box
located at the top of the cryostat.

The hall bar in Fig. 46 can be biased with one lock-in in two ways. One way
is voltage bias: we used the lock-in function generator with amplitude settings in
the Volt scale and we put in series a voltage divisor (1/1000 or 1/100 depending
on the situation) to reach the mV scale. The other way is current bias and
the same voltage generator was used but this time we put in series a 10 MΩ

resistance, in particular we used 1 V and 1 MΩ in series, i.e. a current bias of
100 nA.

The first lock-in was used to measure the current. The second and third
lock-in were used to measure four-point voltage drops (Vxx and Vxy) and their
DC voltage sources were used to bias the gate contacts.

The lock-in voltage generators are controllable with a custom built LabView
program that allows to perform voltage sweeps between a range of two chosen
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Figure 45: Cryostat contact box.

values.
In the process of changing contacts it is important to keep the Hall bar at

ground and also the gates. To do this 50 Ω BNC caps were used.

I+ (Source) I- (Drain)

~

+
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+
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V+
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Current preamp

Lock-in amplifier

Gate

Figure 46: A possible measurement configuration (four-probe measurement). It
is possible to measure two voltage differences and bias two gates simultaneously.

It is possible to set the readings representation of the lock-in in two ways.
If we imagine a voltage or current measurement as a phasor, we can represent
this object in two ways: in the X-Y plane or with polar coordinates R-φ. The
phase φ can be brought to zero or π via an AUTO-PHASE command. As we
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will see in chapter 5, since we expect the phase to be constant, we chose to
represent voltage and current values with their X component (e.g. Vx or Ix)
after performing an autophase on the signal. Another representation is the
polar one (e.g. VR or IR and Vφ or Iφ) used in Appendix A.

In the next chapter colored squares over contacts will indicate where the
lock-in amplifier was connected to perform voltage measurements.
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5
Experimental results

The device on which the measurements have been performed is the Hall bar
illustrated in chapter 3. This device serves as proof-of-concept of the Bisector
illustrated in chapter 3.

The filters present on the cryostat lines were removed, measurements with
filters present are discussed in appendix A.

5.1 Check of the Ohmic contacts

First of all, the device has been mounted on the chip carrier of the Heliox
cryostat and then, before inserting the whole insert into the helium bath, a
quick check of the sample contacts was performed. Taking as a reference the
photo in Fig. 47, we worked in AC current bias using contact 1 and 16 as source
and measuring the output current at all the other contacts. We passed 1 V

through a bias resistance of 10 MΩ that is much larger than the resistance of
the Hall bar, so we expect to measure 100 nA at all probed terminal. All gate
contacts have been put to ground. No current was measured flowing through
contact 9 and 10. This fact led to the inspection of the sample under the optical
microscope, and a lithographic defect was found, so a piece of the Hall bar cut
out from the rest of the device (Fig. 47). Due to the Hall bar cut, the only
usable gates are two: gate 12 and 14. This is not a big problem since we can
perfectly asses the bisection mechanism and use contact 11 as drain.
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Figure 47: Hall bar device pin out.

5.2 Gates characterization

At this point the sample was inserted in the cryostat helium bath without
turning on the magnetic field.

The first measurement that was performed was the characteristics of the
two usable gates. We inject 100nA of current at contact 1 together with 16
and measure the output current at contact 11, while sweeping a voltage bias
applied to the gate contact. What we call characteristics is a gate voltage sweep
while measuring the current on the drain contact keeping source-drain voltage
constant. From Fig. 48 can be noticed that the gate characteristics is affected
by hysteresis, probably due to charge traps embedded in the substrate [17]. The
current pinches off at a voltage gate of Vg = −0.25 V. When the channel under
the gate is depleted, some electrons get trapped and are not injected back at the
same voltage value when raising the bias. Fig. 49 shows that the gates behave
the same. Hysteresis is dependent on lock-in integration time and temperature,
possibly due to the traps having a certain activation energy [18]. The same
measurement was performed in Fig. 50 after the condensation cooldown. In
Fig. 51, both gates pinch off the currents at −0.25 V as also confirmed by a
simultaneous bias sweep on both gates.
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Figure 48: Gate 14 IV curve with different integration times.

Figure 49: Gate 14 and 12 IV curves with 1s integration time.
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G14 G12Source
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Figure 50: Gate 14 and 12 IV curves.

G14 G12Source
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Figure 51: Gate 14 and 12 IV color map.
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5.3 2DEG characterization

Figure 52: Quantum Hall effect measurement set-up.

odd even

Figure 53: T = 299mK 2DEG characterization.

In current bias and the gates at ground and turning on the magnetic field, we
measure the Hall voltage as in Fig. 52, at contacts 3 and 13, and the longitudinal
voltage drop along the bar at contacts 2 and 3. Performing the cooldown at
300 mK, we see SdH oscillations visible in Fig. 53, but the quantization at ν = 2
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is still not perfect. This is probably due to a parallel conduction occurring under
the 2DEG. The quantization ascribable to both spin bands full (even ν) should
be sharper than that with only one spin band full (odd ν) because spin band
pairs are more separated in energy and better resolved in the case of broadening
effects due to a non-ideal sample. The Zeeman splitting is of the order of 0.1
meV, while the Landau splitting is of the order of 0.5 eV. This means that the
minimum of Rxx for even ν should be lower than that at odd ν. From Fig. 53 we
see that this is not the case for the ν = 2 and ν = 3 plateau. The contribution
of a parallel conducting layer on Rxx resistance increases with the field value
[19].

From Fig. 53 we can also find the following transport parameters: electron
mobility µ, surface electron density n and the scattering time τ . To do this we
use the fact illustrated in chapter 1, that when B → 0 we recover the Drude
formulas for ρxy and ρxx. The former depend on n and the latter on τ , and
so µ from ρxx = 1/enµ. So what we need to do is finding from Fig. 53 the
zero field value of Rxx and the slope of Rxy curve near the origin (when no
plateaus are visible). To convert the measured R values to resistivity ρ values
we need to multiply for the ratio between the Hall bar width and height that
equals 2.4. The dimensions of the Hall bar are taken from Fig. 54. We find

Figure 54: Hall bar size to convert a resistance value to a resistivity.

µ = 3.37× 106 cm2/(Vs), n = 2.2× 1011 cm−2 and τ = 128 ps.

From better resolved SdH oscillations in the insert of Fig. 55, it was noted
that the low field oscillations were characterized by beatings.

We suggest that these beatings originate from a zero field spin splitting
interaction (spin orbit interaction) and on this assumption we verify the model
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illustrated. In Fig. 56, a fast Fourier transform was applied to the SdH signal

Figure 55: High resolution SdH oscillations with low field beatings zoom in the
insert.

to highlight the various frequencies responsible for the main oscillations and
the low field beatings. From the fit in Fig.57, using the model in [20], it
is possible to get the following values: the effective gyromagnetic ratio of the
electron and the zero field spin splitting. From the spectrum of the Hamiltonian
(1.14) taking into account also Zeeman effect and Rashba spin-orbit coupling,
one finds that the energy difference between levels with spin up and spin down
is δ = [(EL−EZ)2 + δ2

0 ]1/2−EL. EL is the Landau level spacing ~ωc, EZ is the
Zeeman splitting g∗BµB and δ0 is the zero field spin splitting. To perform a fit
on the experimental data we know that δ takes a special form for the field values
at which SdH oscillations present a beating node, in particular δ = η~ωc, where
ωc is the cyclotron frequency at beating node field value and η = 0.5, 1.5, 2.5, ...

from the highest to the lowest field value. It is found that g∗ = −0.29 ± 0.06

and δ0 = 0.638± 0.007meV. For bulk GaAs g∗ = −0.44 [21], but here the value
is higher due to the presence of the heterostructure quantum well that confines
electrons [22–25]. This effect has been used to engineer the g∗ factor [26, 27].

From these parameters and the transport parameters it is possible to recon-
struct the SdH curve with the model from [20]. Comparing Fig. 58 and Fig. 59,
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Figure 56: FFT of the SdH signal in Fig. 55.

Figure 57: Spin splitting model fit. The red curve takes into account Zeeman,
Landau and zero field (SO) splitting, the other curves are the isolated spin
splitting contributions. EL, EZ and δ0 are respectively Landau, Zeeman and
zero field spin split.

the last experimental beating appears damped compared to the theoretical one,
presumably due to too short acquisition time.

Other effects from which this beating pattern can emerge have been studied
in quantum well systems with more subbands occupied [28–30].

After these measurements we set the magnetic field at a value corresponding
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Figure 58: Theoretical SdH curve (model from [20]) differentiated with respect
to the magnetic field to remove DC components. τq is the quantum scattering
time (Landau level line width) and was chosen to better match the experimental
figure.

Figure 59: Experimental SdH curve differentiated with respect to the magnetic
field.

to the ν = 2 center of the Rxy plateau, that is B = 4.6 T.

5.4 Chirality check

To determine the chirality of the edge current when turning on the magnetic
field at a certain ν value, contact 4 is left floating and current is measured at
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contact 11 as in Fig. 60. For positive magnetic field value, non-zero signal was
measured, instead if we ground contact 4, no signal is measured at contact 11. If
we measure current at contact 4 while keeping contact 11 grounded or floating,
no difference was detected. This means that for positive field values we have
anticlockwise chirality.

Figure 60: Counterclockwise chirality for B > 0. In this figure the Drain is at
contact 11.

5.5 Gate characteristics at ν = 2

Now we perform a series of voltage measurements using the contacts across a
gate (along the Hall bar or in diagonal), with various combinations while varying
the gate voltage bias or the filling factor underneath. All of this is to study the
bisection effects illustrated in chapter 3.

We bias the Hall bar with Vb = 0.2 mV using the Source and Drain contacts
illustrated in Fig. 61. For the voltage along the device and across the gate 14
(xx), what we observe in Fig. 61 agrees with the behaviour studied in section
2.4.1, except for the fact that the values on the plateau appear shifted due to
Rxx 6= 0.

The same type of measurement but along the gate (xy), was performed. The
correct behaviour is observed also in this case but again the plateau values are
shifted and we do not precisely have −Vb at ν = 2 (again Fig. 61).

In Fig. 62, the same is repeated on gate 12 and with other contacts on gate
14.

Now we also measure the voltage across the diagonal contacts of the gate.
And again, we see from Fig. 63 the correct behaviour and shifted values.

Now we measure the case with two barriers at ν = 1. The diagonal voltage
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(-1/3)Vbias

G14Source
Drain

Pinch-off

ν = 1 under the Gate14

ν = 2 under the Gate14

Figure 61: Gate 14 bias sweep and voltage measurement along the device (xx)
and along the gate (xy).

G14Source
Drain

G12

common

ν = 1 under 
Gate12 and 
Gate14

Figure 62: Gate14 or Gate12 bias sweep and voltage measurement along the de-
vice (xx) and along the gate (xy). Bilateral sweep of gate voltage was performed
and hysteresis is visible.

drop and the longitudinal voltage drop measured in Fig. 65 agrees with the
theoretical values, up to the usual offset due to the non-vanishing Rxx.
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G14Source
Drain

ν = 1 under the Gate14

Figure 63: Longitudinal voltage drop and diagonal voltage measurements on
gate 14. A non-zero slope is visible on the blue curve

G14Source
Drain

G12

common

ν = 1 under the 
Gate14
And Gate12

Figure 64: Same as Fig. 63 but also on gate 12 and with different contacts. The
gates exhibit no significant difference in operation.

At this point the only thing left to measure the voltage drops in all possible
barrier configurations. This has been done in Fig. 66 and Fig. 67, where a 2D
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G14Source
Drain

G12
ν = 1 under the 
Gate14 and 
Gate12

2/3

-1/3

Figure 65: Simultaneous sweep on both gate voltage biases; diagonal and lon-
gitudinal measurements crossing both gates.

colour map was made by performing a 2D sweep on the voltage bias of both
gates.

G14 G12

Figure 66: 2D map of the longitudinal voltage drop across the two barriers.
Theoretical values are written on the respective plateaus.

Apart from the discrepancies in Fig. 61-65, we correctly obtain the working
regimes of the device.
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RK/2

-RK/2

0

0-1/3

G14Source
Drain

G12

Figure 67: 2D map of a diagonal voltage across the two barriers. On the left
the colors represent voltage values, on the right diagonal resistance. Theoretical
values are written on the respective plateaus.

5.6 Gate characteristics at ν = 4

Now we study the case of the Hall bar at ν = 4. This case is interesting because
the bisection can also be achieved at ν = 4 with a barrier at ν = 2.

We bring the magnetic field to B = 2.26 T. This value is an average between
the center of the ν = 4 Rxx and Rxy plateaus. This time we expect a larger
spectrum of voltage bias fractions observable.

Using a single barrier, we can observe four plateaus in Fig. 68, but the
fractions visible are still the same on the diagonal (the last row of Table 2 of
section 2.4.3). New fractional values (the last row of Table 1 of section 2.4.3) are
visible along the sample contacts across the barrier in Fig. 69. The fractions that
actually appear on the plateaus of the red curves are not quite the theoretical
ones and this is due to the non-vanishing Rxx.

Other fractions in Fig. 70 and Fig. 71 (diagonal of Table 1 and Table 2 in
section 2.4.3) emerge measuring voltages across both barriers on different states.

It is also possible to measure all possible combinations performing a 2D sweep
on both gate bias voltages as previously seen. Table 1 and Table 2 in section
2.4.3 include all values obtainable in principle in the measurements shown in
Fig. 72 and Fig. 73.

From all plots shown we correctly distinguish the predicted plateaus. Even
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1/2

-1/2

ν = 4

ν = 3

ν = 2

ν = 1

ν = 0

Figure 68: Gate12 diagonal voltage vs gate12 voltage bias with theoretical Vb
fractions.

G12Source
Drain

ν = 4

ν = 3

ν = 2

ν = 1

ν = 0

3/4

1/2

1/4

Figure 69: Gate12 longitudinal voltage drop vs gate12 voltage bias with theo-
retical Vb fractions.

if their voltage values are not the ones we expected for a sample with Rxx = 0,
we can now be sure that the bisection scheme works correctly at different filling
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G12
Drain

ν = 4

ν = 3

ν = 2

ν = 1

ν = 0

G14Source

6/7

2/3

2/5

Figure 70: Longitudinal voltage drop across both vs gate12 and gate14 voltage
bias with theoretical Vb fractions (diagonal of Table 1 in section 2.4.3).

G12
Drain

ν = 4

ν = 3

ν = 2

ν = 1

ν = 0

G14Source

1/5

-1/3

-5/7

Figure 71: Diagonal voltage across both vs gate12 and gate14 voltage bias with
theoretical Vb fractions (diagonal of Table 2 in section 2.4.3).

factors. Thus, it is possible to study QH breakdown effects on this Hall bar
device to obtain voltage bias values for a safe operation, even for the full bisector.



5.7 Quantum Hall breakdown 61

G14Source
Drain

G12

ν =4
under 
G14&12

ν =3
under G12

ν =2
under G12

ν =1
under G12

ν =0
under G12

ν
=

3
u

n
d

e
r 

G
1

4

ν
=

2
u

n
d

e
r 

G
1

4

ν
=

1
u

n
d

e
r 

G
1

4

ν
=

0
u

n
d

e
r 

G
1

4

Figure 72: Longitudinal voltage drop across both vs 2D gate voltage bias.
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Figure 73: Diagonal voltage across both vs 2D gate voltage bias.

5.7 Quantum Hall breakdown

The breakdown of the QHE in conventional Hall bars is an important limit to
the ultimate metrological precision of this class of resistance standards. Given
the finite intrinsic current and voltage noise of any measurement system, ideally
one would like to measure a quantum Hall resistance using the largest possible
currents and voltages. On the other hand, the precise quantization of resistance
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relies on the fact that the bulk is almost perfectly insulating, and this condi-
tion fails when the Hall voltage exceeds a limit voltage leading to a breakdown
of the QHE [31–33]. For this reason, it is generally important to quantify the
breakdown voltages of this class of devices.

The breakdown of the QHE can derive from a the large number of inter-
playing mechanisms [34–36]. In the case of a simple Hall bar, the breakdown
voltage can be typically increased by fabricating a wide Hall bar, so that the
voltage drop is distributed across the large lateral dimension of the Hall bar.

The presence of a top gate complicates the situation. For instance, in order
to achieve a ν = 1 condition under a barrier, a well-defined gate voltage has to
be applied to the gate, with respect to the channel. If the transverse voltage
drop in the channel becomes large, it is clear that it is not possible to use a
field-effect electrode to induce a uniform carrier density in the channel, and the
voltage drop within the channel influences the effect of the gate. This kind of
effects is generally referred to as "self-gating".

We now study the voltage bias range at which the device can operate be-
fore the breakdown occurs, since we expect to find deviations from the values
reported in literature for conventional Hall bars. To do this, we position our-
selves on various plateaus on the diagonal voltage of a certain gate and increase
the voltage bias while sweeping on the plateau. What we expect to see is the
shrinking of the plateau with increasing voltage and its disappearance at a cer-
tain voltage value. We would like to give an estimation of this critical voltage
value, where the quantum Hall effect breaks down. The figures 74 to 78 are
measurements at different Hall bar ν and different ν diagonal plateau under the
gate (indicated by a blue arrow on a Vd vs Vgate plot at a fixed bar bias).

To estimate the voltage at which the breakdown happens, the following pro-
cedure was put in place. In every QH breakdown color plot there is a colored
triangular region that represent the shrinking of the plateau. For every Vbias
value, the corresponding VdX values stay constant inside the triangular region,
up to a certain fluctuation. When we approach the region boundary the fluc-
tuation increases and as soon as it does we define there a scatter point with
an error bar that covers the region with this increased fluctuation. A linear fit
was performed on these points as an approximation to estimate the breakdown
voltage value, this value is the intersection of the fitting lines i.e. when the
diagonal plateau disappears. The result is shown in Fig. 74 to Fig. 83. Thus
we can deduce that the device safely works at ν = 2 and at ν = 4 for bias
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Source
Drain

G12

Figure 74: Breakdown measurement with the Hall bar at ν = 2 and sweep on
the ν = 1 diagonal plateau. The green region is the shrinking plateau.

Source
Drain

G12

Figure 75: Breakdown measurement with the Hall bar at ν = 4 and sweep on
the ν = 2 diagonal plateau. The green region is the shrinking plateau.

voltages respectively lower than 20 mV and 10 mV; they are of the same order
of the plateau maximum extension in Vg.

From the voltage values obtained we could find the corresponding critical
currents from the Drain measurement, the error bar on the current is found
from the two corresponding extremal voltage values. For Fig. 74, i.e. one bar-



5.7 Quantum Hall breakdown 64

Source
Drain

G12

Figure 76: Breakdown measurement with the Hall bar at ν = 4 and sweep on
the ν = 3 diagonal plateau. The green region is the shrinking plateau.

Source
Drain

G12

Figure 77: Breakdown measurement with the Hall bar at ν = 4 and sweep on
the ν = 1 diagonal plateau. The green region is the shrinking plateau.

rier at ν = 1 and the bar at ν = 2, we find Ic = 0.794 ± 0.008µA, this value
is low compared to standard Hall bars used for metrology [37], where current
bias of the order of the 10µA are used to achieve high precision and Ic can
be of the order of 100µA. This low value Ic is possibly due to the self-gating
effect discussed previously. Examples in literature of a low Ic is found in the
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Source
Drain

G12

Figure 78: Breakdown measurement with the Hall bar at ν = 4 and sweep on
the ν = 4 diagonal plateau. The green/cyan region is the shrinking plateau.

Figure 79: Fig.74 fit. Vbreakdown = 20.8± 0.2 mV.

effect of a disordered or corrugated sample [38][39]. The non zero value of Rxx,
though not contributing so prominently in our case, can also decrease Ic as it
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Figure 80: Fig.75 fit. Vbreakdown = 14.4± 0.2 mV.

Figure 81: Fig.76 fit. Vbreakdown = 15± 1 mV.

introduces more dissipation effects. For other values of Ic from the Fig. 80 to
Fig. 83 we can only give an order of magnitude since the preamp did not have
current range settings for I > 1µA and it was challenging to measure high
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Figure 82: Fig.77 fit. Vbreakdown = 16.0± 0.6 mV.

Figure 83: Fig.78 fit. Vbreakdown = 10.3± 0.1 mV.

voltage bias without the lock-in saturation, but it is possible to give an order
of magnitude considering the currents measured before the preamp saturation.
For one barrier at ν = 2 and ν = 1 we find Ic & 0.3µA and for ν = 3 and
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ν = 4 we find Ic & 1µA. For lower ν values under the gate find a lower Ic.
The value of Ic is also linked to the width of the bar and so one should not
expect significant deviations in Ic using the Bisector. The case with the Hall
bar at ν = 2 and one barrier at ν = 1 has a higher breakdown voltage value
than all the cases with ν = 4, this is possibly due to the effective restriction of
the insulating bulk due to more edge channels present, in fact we notice that
there is a general decrease of the breakdown voltage values for the Hall bar at
ν = 4 with increasing ν under the gate.

To summarize, we can say that we find a breakdown bias voltage of the order
of 10 mV, instead of the order of 1 V for conventional Hall bars. This means that
for metrological applications the signal to noise ratio will be 100 times inferior.
So the flexibility of the circuit limits the precision achievable, but this does not
mean that the device will not be useful for calibrations as it actually depends
what precision we want to reach and, furthermore, the ultimate precision of the
device is still unknown.
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6
Output resistance

All measurements reported in this thesis have been obtained using a four-probe
technique, that allows to remove the effect of contact resistances and to obtain a
precise QH measurement: this is certainly true as long as voltage probes do not
drain any current, i.e. the measurement apparatus has to have a large internal
resistance (infinite in the ideal case).

In this chapter we discuss deviations due to non-ideal effects in the measure-
ment configuration and, in particular, to the non-zero output resistance Rout of
the studied QH circuits. The calculation of Rout is not very simple in the QH
regime [5, 9], and the results of a numerical study will be reported in the first
part of the chapter. In the second part, a resistive model will be proposed to
describe the behaviour of the studied QH circuits. The quantity Rout must be
taken into account when assessing the ultimate precision of our devices, as it
perturbs the fractional values of RK derived from the bisection scheme.

To see the effect of a finite Rout, now we consider the simple one barrier
circuit illustrated in Fig. 84 and Fig. 85 working at ν = 2. To perform a
four-probe measurement we choose two contacts to inject a known current and
two contacts where to measure a voltage drop. Fig. 84 and Fig. 85 show a
limit where an ideal voltage measurement (thus draining no current) is used to
measure V = V+ − V−.

Now we illustrate how to write the equations to calculate voltage drops
on this kind of circuits, following the Landauer-Büttiker formalism: each edge
channel carries an excess current Vc/RK , where Vc is the voltage of the contact
from which the edge originates. For the circuit in Fig. 84 we write the current
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V+ V-

i=0

VI+

V

Figure 84: One barrier Hall bar at ν = 2. Barrier at ν = 2 and ideal voltage
measurement (the voltage probe drains no current).

I

Vr

V+
V-

i=0

VI+

V

Figure 85: One barrier hall bar at ν = 2. Barrier at ν = 1 and ideal voltage
measurement (the voltage probe drains no current).
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conservation for each contact:
2V+ + IRK = 2VI+

2VI+ = 2Vr + IRK

Vr = V−

V+ = V−

.

For the one in Fig. 85 we write for each contact:
2V+ + IRK = 2VI+

VI+ + V− = IRK + 2Vr

Vr = V−

VI+ + V− = 2V+

.

We can generalize the two cases by introducing the parameter b = 2 − ν, that
is equal to b = 0 for a barrier at ν = 2 and b = 1 for the barrier at ν = 1. The
new equations read: 

2V+ + IRK = 2VI+

(2− b)VI+ + bV− = IRK + 2Vr

Vr = V−

bVI+ + (2− b)V− = 2V+

.

From here we can find a resistance R = V/I = (V+ − V−)/I = bRK/2(2 − b)
for both cases. However, if our measuring apparatus has an internal resistance
Rload, we have to take into account a current i drained from the measurement
contacts (Fig. 86 and Fig. 87). In this last case we proceed in a similar way,
taking into account also the new current i. The generalized equations are:

2V+ + IRK = 2VI+

(2− b)VI+ + bV− = IRK + 2Vr

2V− + iRK = 2Vr

bVI+ + (2− b)V− = 2V+

V+ − V− = iRload

. (6.1)

Now the voltage we read is perturbed to be V + δV , where V is the open
circuit voltage (ideal case). Note that now V + δV = V+ − V−. The voltage
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Figure 86: One barrier Hall bar at ν = 2. Barrier at ν = 2 and a voltage probe
with a finite internal resistance.
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Figure 87: One barrier Hall bar at ν = 2. Barrier at ν = 1 and a voltage probe
with a finite internal resistance.
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V + δV = V − iRout and so δV = −iRout.
Since R = V/I, we have i = V/(Rload + Rout). The resistance R is then

perturbed as:
V + δV

I
= R

Rload
Rload +Rout

If Rload � Rout we recover the ideal case and so that is why it is important to
study the behaviour of Rout. The value of Rout, as a function of the number
of stages and their configuration, can be investigated numerically and with an
analytical model for the Bisector.

6.1 Numerical estimate of Rout

We consider now the device studied in section 2.4.5. In this case, V+ = VL,0,
V− = VR,n and R = V/I = (V+ − V−)/I = kRk/2

n+1 (for ideal measurement),
where n is the number of stages of the bisector and k is integer and depends on
the lateral barrier configuration. Now we study what happens when we perform
a non-ideal measurement on this QH device (Fig. 88), in particular we calculate
Rout. We will do this for a generic n.

I

V+

Vr = 0

V + δV

i
V-

Rload

VI+

Figure 88: Four (n = 4) stages bisector. A non ideal measurement is performed
on the contacts yielding the RK fractions studied in 2.4.5.
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To find Rout we need to know the perturbed voltage drop V +δV = V+−V−
and the current i. To do this we write at every Hall bar contact of the device
equations like in 6.1 (the central barriers visible in Fig. 88 are always kept at
ν = 1) and to solve the resulting system, the associated matrix is calculated
and than inverted using a python script. With this calculation we know V+, V−
and i and so Rout. We indicated with the superscript (or subscript) i = 1, ..., n,
with i = n being the bottom stage, the parameters belonging to the i-th stage;
for instance bi1, is the left barrier b-parameter for the i-th stage and bi2 the
same for the right barrier. The calculation is carried out for the "standard"
stage configuration discussed in section 2.4.5, i.e. we only consider the two
complementary configurations bi1 = 0 and bi2 = 1, or, bi1 = 1 and bi2 = 0. We
call the first case configuration zero, indicated with ci = 0, and the second case
configuration one, indicated with ci = 1. Each configuration of the bisector
can be indicated by the binary string c1, ..., cn, which corresponds to the binary
representation of (k − 1), see section 2.4.5. Plots in the rest of the section are
plotted as a function of the "Configuration" of the bisector, indicated by the
fractional value f = k/2n. We list for clarity’s sake some values of f for different
n and k:

• n = 1 2n = 2 k = 1, 2 f = 0.5, 1

• n = 2 2n = 4 k = 1, 2, 3, 4 f = 0.25, 0.5, 0.75, 1

• ...

The results for a n = 1, n = 2, n = 3 stages Bisector are reported in Fig.89.
An interesting behaviour emerges, in particular we see by inspection that

there is a simple relationship between Rout values for bisectors of different n.
Every new bisection stage introduces new intermediate fractions, or configu-
ration. We see by inspection that Rout for the new intermediate Rout can be
derived from the previous Rout values according to:

Rout((f1 + f2)/2) =
Rout(f1) +Rout(f2)

2
+ h(n). (6.2)

The value h is a general resistance increase that only depends on n and is
indicated by the arrows in Fig. 89. To better visualize the behaviour of h, we
can plot h vs different configurations for different bisector stages. From Fig. 90,
we see that h indeed only depends on n. We now show that it is possible to find
an expression for h(n) and to do this we plot δh = h(n + 1) − h(n). From the
numerical calculation in Fig. 91, we see that δh(n) follows an exponential law;
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Figure 89: Rout for different n and different later barrier configuration. On the
configuration axis we have k

2n .

we convert the values of δh(n) into a fraction using an ad hoc Python library
(fractions) since the script outputs decimal numbers and we find they are equal
to negative powers of 2. We now plot the same Fig. 91, but in log2 scale. It is
found from Fig. 92 that log2(δh(n)) is rather precisely described by the relation:

log2(δh(n)) = −2n− 3;

this means that h(n) has the following property (in units of RK):

h(1) = constant (6.3)

h(n+ 1)− h(n) =
1

22n+3
. (6.4)

Plugging n = 0 in Eq. 6.4, we speculate that h(1) = 1/8, so we can write:

h(n) =
1

8

n−1∑
i=0

2−2i. (6.5)
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Figure 90: h for different n and different barrier configurations (in units of RK).
On the configuration axis we have k

2n ,

Figure 91: Numerical δh for different n (in units of RK).
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Figure 92: Numerical log2(δh) for different n (in units of RK).

Which can also be written in a closed form as

h(n) =
22n − 1

3× 22n+1
. (6.6)

From Fig. 93, we see that this formula predicts very precisely the h(n) values
obtained by the numerical code.

Interestingly, the empirical rule we found seems to indicate the emergence
of a fractal function Rout(f), as visible in Fig. 94, reporting Rout for a larger
number n of stages.

6.2 Analytical model

Given the surprisingly simple recursive behaviour of Rout, we implemented an
analytical model to explain the numerical results.

We begin by reminding for any Hall bar like in Fig. 95, we have a Hall
voltage:

VT − VB = IR0, (6.7)

where R0 = RK/2 because two edge channels are used. So in general for every
QH circuit branch working at ν = 2, we have VB = VT−IbranchR0, where Ibranch
is the total current flowing in the portion of the Hall bar under consideration.
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Figure 93: Comparison between the numerical value of h(n) and the one derived
from the empirical rule at Eq. (6.6).

Figure 94: Other values of Rout for larger n values (in units of RK).

Since we will take VB as a reference we call Ṽ = VB .
We now add one barrier separating two branches and we work out the voltage

drops across the barrier, using the previous notation. From Fig. 96, we see that
the voltage drop along both upper and lower edges of the Hall bar is R0I, i.e. the
same of a resistance R0 traversed by a current I. This means that we can model
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Figure 95: Hall bar with a total flowing current I, that we indicate with a thin
grey line.

Figure 96: QH circuit branch with one barrier.

voltage drops across a single barrier and on the same edge, with a resistance R0

traversed by the current flowing in the QH circuit branch.
The same argument can be extended to multiple barriers in series on multiple

parallel branches and Fig. 97 shows an application of this model on a specific
QH circuit. From Fig. 98 we see that the injection of current through contacts
introduces a further voltage drop IR0 that can be modelled as an additional R0

resistance in series with the current source; this comes from the quantum Hall
voltage drop for ν = 2. From Fig. 98, this model indicates, which is the correct
result for this QH circuit. Differently V+ − V− = (5/3)IR0, if we remove the
additional R0 resistance in the resistive network and we compute the voltage
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R0 R0

R0

I

I1 = I/3

I2 = 2I/3

Ṽ Ṽ - (2/3)IR0
Ṽ - (1/3)IR0

I1 + I2 = I

Figure 97: QH circuit resistive model.

R0 R0

R0

I

I1 = I/3

I2 = 2I/3

Ṽ - (2/3)IR0 = V-
Ṽ - (1/3)IR0

I1 + I2 = I

V+

V-

R0Ṽ + IR0 = V+

Ṽ

I

I

I

Figure 98: QH circuit resistive model with measurement contacts.

drop at the two extreme ends we find (2/3)IR0 6= V+ − V− and so the model
would not work.

6.2.1 Calculation of Rout

Now, the whole Bisector device can be seen under the light of this resistive
picture, in fact each of its configurations can be brought in the form of Fig.96
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i.e. with vertical barriers (Fig. 99).

2R0

R0

R0

2R0

2R0

Figure 99: n=1 Bisector barrier shift for configuration 0.

Now we can find a general formula for Rout(c1...ci...cn), where c1...ci...cn
is the binary string corresponding to the binary representation of the integer
k in the formula f = k/2n. The task is accomplished by mapping the n-stage
bisector to a resistance network (Fig. 100). We notice that, once we choose a

R0
C1̅ R0C1 R0

2R0

Cj R0 C̅j R0
2R0

2R0

Cn R0 Cn̅ R0
2R0

2R0

R0

Rload

I

i

V+ δV

Vr = 0

V-

V+

Figure 100: Generic Bisector mapped on the resistive network. The effect of
measurement contacts and non-ideal measurement is included. c̄j is the com-
plement of the cj configuration.
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configuration, each stage of the resistance network can be turned into a star of
resistances via the ∆-Y transformation [40].

From now on we enumerate each stage of the configuration from bottom to
top using the index j (j = 1 is the bottom stage), and so here we will use j as
a subscript or superscript to numerate each stage parameter.

R0
R0

2R0

Cj R0 Cj̅ R0
2R0

2R0

Cn R0 Cn̅ R0
2R0

2R0

R0

Rload

I

i

V+ δV

Vr = 0

V-

V+

R0
C̅2 R0

2R0

Cn R0 Cn̅ R0
2R0

2R0

R0

Rload

I

i

V+ δV

Vr = 0

V-

V+

=
C̅2 R0

Figure 101: Equivalence between a n stages bisector with the last stage in
configuration one and a n-1 stages bisector.

One simplification occurs when stage j = 1 is in configuration one (c1 = 1),
in fact the whole stage reduces to one resistance R0; thus we have explained
why Rout(c1...ci...cn−11) = Rout(c1...ci...cn−1) (Fig. 101).

So if we ∆-Y transform all the stages bottom to top the simplified circuit
looks like Fig. 102. The quantities in Fig. 102, RR, RL and RB , are found from
the following recursive scheme, where all resistances are written in units of R0.

R1
B = 1/4 R1

L = 1/2 R1
R = 1/2 (6.8)

RjB = Rj−1
B +

(Rj−1
R + c̄j)(R

j−1
L + cj)

Rj−1
R +Rj−1

L + 3
(6.9)

RjR =
2(Rj−1

R + c̄j)

Rj−1
R +Rj−1

L + 3
(6.10)

RjL =
2(Rj−1

L + cj)

Rj−1
R +Rj−1

L + 3
(6.11)

In these recursive relations, it can be noted that RjL + RjR = 1 for any i (in
fact Rout(11...1) = Rout(1) = 1 +R1

L +R1
R = 2). So Eq.s 6.9, 6.10 and 6.11 can
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Vr = 0

V+

V-

I

i R0

RRRL

RB

RloadV+ δV

Figure 102: Trasformed resistive Bisector.

be simplified as follows:

R1
B = 1/4 R1

L = 1/2 R1
R = 1/2 (6.12)

RjB = Rj−1
B +RjLR

j
R (6.13)

RjR =
(Rj−1

R + c̄j)

2
(6.14)

RjL =
(Rj−1

L + cj)

2
. (6.15)

From Eq.s 6.14, 6.15 and 6.16 we can compute a closed form for RnB(cn..cj ..c1),
RnR(cn..cj ..c1) and RnL(cn..cj ..c1) by substituting the expression (j − 1)-th into
the successive j-th one. The calculation is rather tedious and it is left to Ap-
pendix B.

From the circuit in Fig. 102, one easily can find δV and i, and so Rout. This
last quantity is also the output resistance of the n-stage Bisector for a generic
configuration and that is:

Rnout(cn...cj ...c1) = 1 +RnL(cn...cj ...c1) +RnB(cn...cj ...c1). (6.16)
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If cn...cj ...c1 ends with a string of N ones, you can consider the equivalent case
of an n−N stages Bisector.

Now, having found the expression for Rout for a generic Bisector configura-
tion, we can also find the parameter h(n). To do this, we invert Eq. 6.2 and
plug in the Rout results for the f1, f2 fractions and for the intermediate one
(f1 + f2)/2. And we indeed find that h(n) is configuration-independent and
that

h(n) =
22n − 1

3× 22n
.

Or, using units of RK = 2R0;

h(n) =
22n − 1

3× 22n+1
. (6.17)

The explicit calculation is reported in Appendix B.
The limitations of this resistive model are that it only allows to calculate

the voltage drop across current injecting terminals, and these must lie on the
same edge. For example this model does not allow to calculate the quantities
measured by Fang et al. in [11] (Fig. 17) and for this reason it should not be
considered a resistive equivalent of the QH circuit.

This calculation is useful because in this manner the perturbed values of the
fractions of RK , caused by non-ideal measurements, can be precisely corrected
and so the precision of a bisection QH circuit can be assessed isolating problems
due to Rout from other (maybe) less quantifiable precision loss effects. As we
saw from the numerical calculation plots, Rout is dependent on the bisector
configuration, so we might reach a point where the approximation Rload → ∞
(ideal measurement) or equivalently the condition Rload � Rout is no longer
valid. It must also be said that, even if Rout grows with n, it remains limited.
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7
Conclusions

We now summarize the main results of this thesis.
We study a novel quantum Hall circuit that uses an edge bisection scheme

to obtain a custom fractional value of RK . The edge bisection works with field-
effect barriers (mixers or gates) on a GaAs/AlGaAs two dimensional electron
gas (2DEG). During the thesis, Hall bar devices integrating these barriers have
been fabricated and characterized at filling factors ν = 2 and ν = 4. The
fractional values of RK obtainable via the bisection scheme have been assessed.

A key element to determine the precision of the studied QH bisection circuit
is the maximum current or voltage bias that the Hall bar can handle before a
QH breakdown. To study this effect it was important to check if we obtained the
correct behaviour from the gates. We obtained the correct number of fractional
values for RK and for this reason, the QH breakdown of the bar has been ex-
plored by biasing a single mixer with different voltage values. It was found that
the device works safely at all filling factor configurations for voltage bias values
< 10 mV and breakdown currents of the order of 1µA. It is interesting to stress
that the architecture studied in this thesis was found to be more susceptible
to break down with respect to ungated structures. Even if this QH breakdown
current value appears to be low compared to bias currents used in top precision
metrology that do not have gating features, it can still be useful for calibration
applications.

Unfortunately, the ultimate precision of the bisection mechanism could not
be determined, presumably due to a parallel conduction of the sample, as re-
vealed by SdH oscillations that do not display a dissipation-less regime (ρxx = 0)
despite the cryogenic temperatures (T = 300mK) achieved with a 3He cryostat.
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In addition, the influence of a finite output resistance on the QH circuit has
been studied, both with a numerical and an analytical approach. In the last
case, a resistive model of the QH circuit has been developed and discussed. The
general result obtained was an open question in Ref. [5]. From these studies we
found a general formula for Rout and shown that despite a growth as a function
of n, Rout remains limited even in the n → ∞ limit. The resistive analytical
model turns out (with some caveats) to be a very useful tool that allows to
simplify the calculation of voltage drops for this kind of bisection circuit, by
mapping them on a simple resistive network.

7.1 Perspectives

One open question is whether it is actually possible to achieve metrological
precision with the discussed device architecture and whether this scheme can
also be extended to novel 2D materials such as graphene. In fact, graphene
could be particularly interesting material for metrology [41] due to the unique
Landau energy spacing of graphene ∆ELL ∝

√
B [42], which implies that the

energy spacing between the lowest Landau level and the first excited one is
substantially higher than GaAs at standard magnetic fields of few Teslas and
allows surviving the QHE up to room temperatures [42].

Besides various portings of conventional 2DEG QH metrology approaches
into a graphene platform such as simple graphene Hall bars [43] or graphene
QHARS [44], other approaches based on Corbino disks (a hollow disk) with
regions of p-dopend and n-doped graphene [45][46] in which edge currents flow
in opposite directions, thus cancelling each other in certain regions of the disk
and yielding a RK fraction depending on the wiring, have been proposed [47].
In this fashion a bisection scheme based on n or p regions on the same graphene
sheet could be in principle reproduced.

Figure 103: Simple graphene bisection.
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A simple bisection circuit that is not externally controllable can be made
from a graphene sheet with a hole punched in the middle. The sheet top part is
n-doped and the bottom one is p-doped. The edge channels which emerges from
these filling factors is shown in Fig. 103 with ν = 2 (for electrons) and ν = −2

(for holes). The practical realization of these devices is challenging, since one
would need to realize metal contacts on the n-p interfaces. Furthermore the
edges traveling at a n-p interface might not properly equilibrate to lead to a
vanishing longitudinal voltage drop. Still, given the less stringent requirements
of graphene in terms of temperature and magnetic field, the exploration of this
class of devices is surely a perspective which is worth to investigate.
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A Effect of the insert filters

The original cryostat insert is filtered via two π filters in series, then two low
pass filters and again, on the output line, two low pass RC filters in series and
two π filters. Fig. 104 shows the two type of filters used. The π filters only filter

Figure 104: Insert filters. The one on the left is a π filter, the one on the right
is a low pass RC filter. R = 1 kΩ and C = 47 nF.

frequencies above 10 MHz and are not relevant in this discussion, so we neglect
them and will concentrate only on the double low pass filters.

In this section we discuss what happens on the measurements, if the filters
are not removed. In fact the first measurements were taken with a filtered insert.
It turned out this was not a good idea, so the next measurements were taken
with an unfiltered insert. These are the one shown in the Experimental Results
chapter, while here we only show some measurements taken with filters and
using the (R, φ) representation.

As usual, we passed 1 V through a bias resistance of 10 MΩ that is much
larger than the resistance of the Hall bar, so we expect to measure 100 nA at all
probed terminals. All gate contacts have been put to ground. The output cur-
rent measured at contact 2 was 83.40 nA and the signal had a fase of 153.28 deg.
Getting further away from contact 1 and 16 one measures progressively less cur-
rent and a different phase (e.g. 61.65 nA 111.49 deg, at contact 11). Injecting
current through 1 and measuring at 16 we strangely found 86.10 nA, because the
two lines are bonded on the same contact and so it is a short. The sample was
removed and a metal bridge was put, connecting the contact 1 and 16 on the
sample holder, correctly measuring 100 nA. So we came to the conclusion that
the insert filters were affected by the larger Hall bar resistance and were mod-
ifying the measurement. In fact, lowering the lock-in frequency from 17.206 Hz

to 13.206 Hz the low current value measured at 16 grew to 89.47 nA.
First of all let us compute the cut-off frequency at −3 dB of one line of the

insert circuit without considering the Hall bar device. The result is shown in
Fig. 105. We find a cut-off of 455Hz, that is far from the frequencies used for
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Figure 105: Simulation of the insert circuit [48] without the Hall bar, the cut-off
frequency at -3dB is around 455Hz. In the range 13 − 14Hz the gain is of the
order of −0.01 dB. 150 Ω is the cable resistance.

our AC measurements (in the range of 13− 14Hz, Fig. 105).

Figure 106: Simulation [48] of the insert circuit with a Hall bar at ν = 2
(12.5 kΩ), the cut-off frequency at −3 dB is around 28Hz. In the range 13−14Hz
the gain is of the order of −1 dB 108.

The situation changes if we add the contribution of the Hall bar to the line
resistance. Considering that we use 7 Ohmic contacts, whose lines are filtered
with a double low pass and which are all floating during the measurement, the
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Figure 107: Simple model of the insert circuit with the Hall bar and its lines
[49].

Figure 108: Current loss from left to right (1: first circuit branch to 5: last
circuit branch) along the line in Fig. 107.

Hall bar input has (grossly approximating) seven 47 nF capacitors in parallel.
The same holds for the output, too. Fig. 106 and Fig. 107 shows how that the
input and the output capacitance of the Hall bar resistance change according
to the approximation made. In this case, the cutoff frequency is dramatically
lowered and part of the current injected at the beginning of the line is lost on
the grounded capacitors along the line as reported in Fig. 108.

Since each contact line is capacitively grounded, some current is lost along
the edge of the sample, and this causes Vxx to be different from zero for integer
filling factors because a finite voltage drop along the edge develops as the current
leaks. The magnitude of the shift of the Vxx curves also depends on the chirality:
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for example Fig. 109 for anticlockwise chirality, the effect of current loss in more
visible at the first two contacts the current arrives (before being completely
drained). The effect for clockwise chirality is reported in Fig. 110.

Source
Drain

G14

ν = 2 leakage

Anticlockwise chirality

Figure 109: Vxx 6= 0 at ν = 2 effect is apparent before the channel reaches the
OUT drain (bottom contacts). Anticlockwise chirality.

The diagonal voltages across the gate in Fig. 111 is also affected by the
current loss. So in this case deviations in the plateau values are caused both
by Rxx 6= 0 due to the suggested parallel conduction and by current leakage
through the filters. The deviations appear more prominent than without filters.

In Fig. 112, the capacitive nature of the circuit can be seen by the 2D phase
plot of Vd vs Vg12 and Vg14, where a signal with a phase of 90 degrees is present.

The low value of cutoff frequency is confirmed by the plot in Fig. 113 that
shows a diagonal voltage drop that flattens to zero once we hit the cutoff fre-
quency.
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Source
Drain

G14

Clockwise chirality

ν = 2 leakage

Figure 110: Vxx 6= 0 at ν = 2 effect is apparent before the channel reaches the
OUT drain (top contacts). Clockwise chirality.

ν = 1 leakage
Source

Drain
G14

Anticlockwise chirality

G12

Figure 111: Vd 6= 0 at ν = 1 effect.
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Figure 112: Vd phase 2D map. Contacts wiring is the same as Fig. 111.

Figure 113: Value of Vd (diagonal as Fig. 111) vs bias frequency and gate 14
voltage bias. Increasing the bias frequency, Vd curve flattens to zero as we hit
the cutoff frequency.
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B Other Rout details

B.1 Non-standard values

The script has been written in such a way that it is possible to calculate Rout
also for non-standard configurations (i.e. bi1 = 0 and bi2 = 0 or bi1 = 1 and
bi2 = 1) for a total of 22n configurations but a distinctive pattern has not been
found (Fig.114).

Figure 114: Standard and non-standard values of Rout for a n = 6 stages
Bisector. Red axis is the decimal representation of b11...bi1...bn1 , yellow axis of
b12...b

i
2...b

n
2 . The color bar is in units of RK .
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B.2 Calculation

Eq. 6.2 can be rewritten using the binary strings of configuration that correspond
to the fractions in the Rout argument.

h(n) = Rnout(cn...cj ...0)− Rnout(cn...cj ...1) +Rnout(cn...cj ...0− 1)

2
, (B.1)

where cn...cj ...0 is a configuration string with c1 = 0, cn...cj ...1 is a configuration
string with c1 = 1 and cn...cj ...0 − 1 is the result of the binary subtraction of
cn...cj ...0 with 1.

Now we find the closed form for the RR, RL and RB .

R2
R =

1
2 + c̄2

2
(B.2)

R3
R =

1
2 +c̄2

2 + c̄3

2
(B.3)

R4
R =

1
2

+c̄2
2 +c̄3

2 + c̄4

2
=

1

24
(1 + 2c̄2 + 22c̄3 + 23c̄4) (B.4)

...

RnR(cn...c1) =
1

2n

n∑
j=1

(2j−1c̄j) (B.5)

The last equality is true if we force c̄1 = 1. In a similar manner if we force
c1 = 1:

RnL(cn...c1) =
1

2n
(

n∑
j=1

2j−1cj). (B.6)
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From Eq. (6.12):

R2
B =

1

4
+

1

22

2∑
1

2j−1cj −
1

24
(

2∑
1

2j−1cj)
2 (B.7)

R3
B =

1

4
+

1

23

3∑
1

2j−1cj −
1

26
(

3∑
1

2j−1cj)
2 +

1

22

2∑
1

2j−1cj −
1

24
(

2∑
1

2j−1cj)
2

(B.8)
...

RnB(cn...c1) =

n∑
j=1

1

2j
(

j∑
l=1

2l−1cl)−
n∑
j=1

1

22j
(

j∑
l=1

2l−1cl)
2. (B.9)

We define the sums in brackets in (B.8) as kj , or the decimal representation of
the first js configurations minus the fact that c1 is forced to 1. Same goes for
the brackets in (B.5), that we call k.

Using Rnout(cn...c1) = 1 +RnL(cn...c1) +RnB(cn...c1), we substitute each term
in the definition of h(n):

h(n) = Rnout(cn...0)− Rnout(cn...1) +Rnout(cn...0− 1)

2
. (B.10)

The configuration cn...0 + 1 is equivalent to cn...1. The terms k and kj

for configuration cn...0 + 1 must be replaced with k + 1 and kj + 1, while for
configuration cn...0− 1 with k − 1 and kj − 1. We get:

h(n) = 1 +

n∑
j=1

1

2j
(kj)−

n∑
j=1

1

22j
(kj)

2 +
1

2n
(k)

−1

2
(2 +

n∑
j=1

1

2j
(kj − 1)−

n∑
j=1

1

22j
(kj − 1)2 +

1

2n
(k − 1)

+

n∑
j=1

1

2j
(kj + 1)−

n∑
j=1

1

22j
(kj + 1)2 +

1

2n
(k + 1)).

Simplifying everything (in units of R0):

h(n) =

n∑
j=1

2−2j =
1

3
− 4−n

3
=

22n − 1

3 ∗ 22n
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So in units of RK = 2R0:

h(n) =
22n − 1

3 ∗ 22n+1
. (B.11)

For all zeros configuration we have:

Rout(0...0︸︷︷︸
n

) = 1 +
1

2n
+

n∑
j=1

(
1

2j
− 1

22j
) =

5 + 4−n

3
R0 (B.12)
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