

Metamorphic InAs/InGaAs QWs with electron mobilities exceeding 7×10⁵cm²/Vs

A. Benali,¹ P. Rajak,¹ R. Ciancio,¹ J. Plaisier,² S. Heun,³ G. Biasiol^{1*}
 ¹ IOM CNR, Laboratorio TASC, Area Science Park Basovizza, Trieste, 34149, Italy
 ² Elettra-Sincrotrone Trieste S.C.p.A, Area Science Park Basovizza, Trieste, 34149, Italy
 ³ NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, 56127, Italy
 *Corresponding author: <u>biasiol@iom.cnr.it</u>

Why metamorphic InAs-based 2DEGs

- Potential platforms for a class of low-temperature applications
 - strong spin-orbit coupling
 - large g-factor
 - interface transparency to superconductors
- Near lattice-matched substrate: only GaSb \rightarrow 24nm QWs, μ = 1.8×10⁶ cm²/Vs @ n = 8×10¹¹ cm^{-2 a)}
- InP, GaAs: need for metamorphic growth, strain-limited QW thickness (<10nm)
 - InP: 7nm QWs, $\mu \sim 10^6 \text{cm}^2/\text{Vs}$ @ n = 6×10¹¹ cm^{-2 b)} on gated Hall bars
 - GaAs: 4nm QWs, $\mu = 5 \times 10^5 cm^2/Vs @ n = 4.5 \times 10^{11} cm^{-2 c}$ on gated Hall bars

a) T. Tschirky et al., Phys. Rev. B 95, 115304 (2017)
b) A. T. Hatke et al., Appl. Phys. Lett. 111, 142106 (2017)
c) D. Ercolani et al., Phys. Rev. B 77, 235307 (2008)

Outline

- Goal: increase InAs QW thickness on GaAs substrates (smaller alloy + interface scattering → higher mobility)
- How: optimization of buffer layer (BL) to decrease strain in QW
- Growth protocol
- Structural and strain analysis (AFM, XRD, XTEM)
- Low-T transport characteristics
- Conclusions

Our starting point

n (cm⁻²)

- Solid-source MBE on GaAs (001)
- Graded In_xAlAs BL, x up to 0.79 in 50nm steps @ 330C; gradual relaxation of lattice parameter
- InAs layer embedded in In_{0.75}Ga_{0.25}As QW, no remote doping
- Up to 4-5nm InAs:
 - *n* roughly constant (~ 3 × 10¹¹ cm⁻²)
 - μ up to 3.2×10^5 cm²/Vs (5×10⁵ under bias)
- Above 6nm InAs: misfit dislocations $\Rightarrow \mu$ degradation, increased n

Solutions to increase QW thickness

- Last step: samples with varying $In_{0.84}AI_{0.16}As$ thickness t 50 ÷ 400nm \Rightarrow tuning of residual strain
- 120nm deep QW @ 470C
- 7nm InAs in 9nm In_{0.81}Ga_{0.79}As; In_{0.81}Al_{0.19}As barriers

AFM images

t = 50 nm RMS roughness : 4.4nm

t = 300 nm
RMS roughness : 3.4nm

XRD analysis of strain

- Top: (004) XRD rocking curves showing GaAs and In_xAl_{1-x}As Bragg peaks for different *t* (MCX beamline, Elettra, Trieste, 8keV photon energy)
- In_{0.81}GaAs and In_{0.84}GaAs peak shifts: strain reduction with increasing t
- Bottom: residual perpendicular strain in In_{0.81}GaAs and In_{0.84}GaAs vs t (x from (001) and (224) Bragg scans in bulk InGaAs)
- t ≥ 300nm: In_{0.84}GaAs virtually strain-free, In_{0.81}GaAs switches from compressive to tensile.

Cross-sectional TEM analysis

(a) Low-resolution [011] cross-sectional TEM overview of the heterostructure. Dislocations self-annihilate in the BL, dislocation-free QW region ^{a)}

(b) Z-contrast HAADF STEM image of the QW region along the same zone axis

a) F. Capotondi, Thin Solid Films 484, 400 (2005)

TEM analysis of strain in InAs QW

- High-resolution [011] cross-sectional TEM of InAs QWs for $t_{In0.84GaAs}$ of 300 nm (a) and 50 nm (b).
- Out-of-plane strain maps calculated using geometric phase analysis (GPA) with <111> reflections for heterostructure for $t_{In0.84GaAs}$ of 300 nm (c) and 50 nm (d)

 (e) strain profiles in yellow regions above. The mean strain values for t_{In0.84GaAs} 300 nm and 50 nm is 0.9±0.5 % and 2.2±1.1 % respectively. Spatial resolution = 5 nm.

Low-T electron transport

- Low-temperature (T=4.2 K) electron charge density and mobility in InAs/In_{0.81}GaAs 2DEGs on Van der Pauw structures as a function of *t*.
- μ increases up to 7.1×10⁵ cm²/Vs at *t*=300nm, after which it saturates, consistently with the saturation of residual strain in the barriers. $n \approx 3-3.5 \times 10^{11}$ cm²/Vs, largely independent on *t*.
- Longitudinal resistance Rxx as a function of magnetic field B for t = 300nm: 2DEG without parasitic conduction channels, and onset of integer quantum Hall plateaus.

Conclusions

- Optimization of In_xAl_{1-x}As buffer layer → strain reduction, thickness increase in metamorphic InAs/In_{0.81}Ga_{0.79}As QWs on GaAs
- Thickness of last $In_{0.84}AI_{0.16}As$ step 50 to \geq 300 nm:
 - Strain in In_{0.81}Ga_{0.79}As/In_{0.81}Al_{0.79}As barriers compressive to tensile
 - Strain in InAs QWs from 2.2% to 0.9%
 - Low-T electron mobility from 6×10⁴ cm²/Vs 7.1×10⁵ cm²/Vs
- 2DEG quality:
 - substantially increased for growth on GaAs (μ = 3.5 X 10⁵ @ n = 3.5×10¹¹ cm⁻²; 5×10⁵ cm²/Vs @ n = 4.5×10¹¹ cm⁻²)
 - comparable with state-of-the-art on InP ($\mu = 8.3 \times 10^5 @ n = 4 \times 10^{11} cm^{-2}$; $10^6 cm^2/Vs @ n = 6 \times 10^{11} cm^{-2}$)

