

EUROMAT 2021 Conference

September 13-17, 2021, Virtual Conference

Morphology control and Electrical characterization of freestanding InSb nanostructures

<u>Isha Verma</u>¹, Valentina Zannier¹, Sedighe Salimian¹, Stefan Heun¹, Francesca Rossi², Daniele Ercolani¹, Fabio Beltram¹, and Lucia Sorba¹

¹NEST-Istituto Nanoscienze CNR-Scuola Normale Superiore di Pisa, Italy

² IMEM-CNR, Parma, Italy

isha.verma@sns.it

Chemical Beam Epitaxy (CBE)

CBE at NEST:

Riber Compact-21 CBE system Metal-organic precursors: Group III : TM**In**, TE**Ga**, TM**AI** Group V : TB**As**, TB**P**, TDMA**Sb**, TM**Sb** n-doping: TB**Se** VLS growth occurs when a liquid alloy droplet starting from a metal nanoparticle (NP) becomes supersaturated with material from a gaseous reactant. The material then precipitates from the solid-liquid interface to form a nanowire.

Motivation

InSb:

Small bandgap, low electron effective mass, high electron mobility, high Landè g-factor and strong spin-orbit interaction

 \rightarrow promising material for optoelectronics, thermoelectrics, spintronics and quantum computing

- > Large lattice mismatch with all other III-Vs \rightarrow difficult integration of defect-free InSb
- Sb acts as an surfactant \rightarrow difficult to control/tune the InSb morphology during the growth

InAs/InSb axial nanowires grown by CBE

InSb: <110> zone axis InAs: <2-1-10> zone axis

- InAs NWs have WZ crystal structure with 6 equivalent {112} sidewalls
- Axial InSb has ZB crystal structure with 6 equivalent {110} sidewalls

D. Ercolani el al. *Nanotechnology* 20, 505605 (2009) L. Lugani el al. *Cryst. Growth Des.*, 10, 4038 (2010)

Morphology control of InSb nanostructures

High T enhances the axial growth and reduces the radial growth

Directional InSb growth

Sample alignment for directional InSb

Free-standing InSb nanoflags (NFs)

Free-standing InSb nanoflags (NFs)

- Defect-free ZB crystal structure
- Stoichiometric composition
- Relaxed lattice parameter

Verma et al, Nanotechnology 31 384002 (2020)

Free-standing InSb nanoflags (NFs)

Temperature (°C)

Increasing InSb growth time

InSb NFs dimension Length= $2.8 \pm 0.2 \mu m$ Width= $470 \pm 80 nm$ Thickness= $105 \pm 20 nm$

Using tapered and more robust InP NW stems, we could achieve bigger InSb NFs – easy device fabrication

Verma et al, ACS Appl. Nano Mater 4 5825 (2021)

Transport measurements

Hall-bar device

Channel width (width between contacts 1-3 and 2-4)=325 nm Channel length (1-2 and 3-4)=1.5 μ m. The NF thickness is ~100 nm.

Transport measurements

Conclusions

Finding the parameters that affect axial and radial growth is important for controlling and tuning the nanostructure morphology

More robust NW stem for longer growth time and sustenance of orientation

 Electron Hall mobility of about 29500 cm²/ V.s reported for Free-standing InSb NF. Mean free path upto 500 nm.

InSb NFs: versatile and convenient 2D platform for advanced quantum technologies.

Thanks

Isha Verma Ph.D. student e-mail: isha.verma@sns.it

Dr. Valentina Zannier Researcher

e-mail: valentina.zannier@nano.cnr.it

Dr. Sedighe Salimian

e-mail: sedighe.salimian@sns.it

Prof. Stefan Heun Professor

e-mail: stefan.heun@nano.cnr.it

Dr. Francesca Rossi Researcher

e-mail: francesca.rossi@imem.cnr.it

Daniele Ercolani Technologist

e-mail: daniele.ercolani@sns.it

Prof. Fabio Beltram Director, NEST Lab

e-mail: stefan.heun@nano.cnr.it

Prof. Lucia Sorba CNR Research Director

e-mail: lucia.sorba@nano.cnr.it