

UNIVERSITÀ DI PISA

Dipartimento di Fisica Corso di Laurea Magistrale in Fisica della Materia

Quantum Transport in Planar Niobium/black-Phosphorus/Niobium Junctions

<u>Relatori:</u> Prof. Stefan Heun Dr. Francesca Telesio Prof. Stefano Roddaro <u>Candidato:</u> Giulio Cappelli

Appello di laurea di dicembre A.A. 2019/2020

Introduzione

Giunzione SNS

black-Phopshorus (bP)

Outline:

Superconduttività e giunzioni SNS

- ➢ Black-Phosphorus
- Fabbricazione dei dispositivi
- Setup sperimentale
- Risultati sperimentali

Conclusioni e prospettive future

Outline:

Superconduttività e giunzioni SNS

- Black-Phosphorus
- Fabbricazione dei dispositivi
- Setup sperimentale
- Risultati sperimentali
- Conclusioni e prospettive future

<u>Superconduttività</u>

 \succ

Superconduttore = Conduttore perfetto + Diamagnete perfetto

Andreev Reflection

Interfaccia NS

Andreev Reflection

Interfaccia NS

<u>Giunzione SNS</u>

Trasparenza Interfaccia SN

<u>Barriera di potenziale</u> all'interfaccia SN 1. Layer isolante S Ν S 2. Barriera Schottky Metallo Semiconduttore Φ_{SB} E_C E_F E_{V}

• And reev reflection $\rightarrow I = I_N + I_{excess}$

• Normal reflection \rightarrow I = I_N - I_{deficit}

Trasparenza Interfaccia SN

• Andreev reflection $\rightarrow I = I_N + I_{excess}$ $I_N = V/R_N$, $(V >> \Delta_0/e)$ • Normal reflection $\rightarrow I = I_N - I_{deficit}$

Outline:

Superconduttività e giunzioni SNS

> Black-Phosphorus

Fabbricazione dei dispositivi

Setup sperimentale

Risultati sperimentali

Conclusioni e prospettive future

Black-Phosphorus (bP)

- Ottenuto per la prima volta nel 1914
- ➤ Simile alla grafite
- Nel 2014 viene "riscoperto" come materiale 2D

- Un sigolo layer di bP non è piatto
 - ⇒ Struttura a nido d'ape corrugata
 - ⇒ Anisotropia nel piano

Black-Phosphorus (bP)

- Semiconduttore di tipo p
- Anisotropia delle proprietà ottiche e di trasporto elettrico e termico

Stabilità ambientale

 \succ Grande <u>reattività</u> del bP in aria \Rightarrow **Svantaggio** nella fabbricazione di dipositivi

Azione combinata di ossigeno, acqua e luce è **distruttiva**

A. Castellanos-Gomez et al., 2014 2D Mater. 1 025001

Outline:

- Superconduttività e giunzioni SNS
- Black-Phosphorus

Fabbricazione dei dispositivi

- Setup sperimentale
- Risultati sperimentali
- Conclusioni e prospettive future

Protocollo Coating		Pulizia superfici	Metallo depositato
А	MMA-MAA/PMMA $(t \sim 700 \text{ nm})$	5 min Ar	70 nm Nb
В	PMMA ($t \sim 300 \text{ nm}$)	1 min O ₂ + 5 min Ar	70 nm Nb
С	PMMA $(t \sim 300 \text{ nm})$	1 min O ₂ + 5 min Ar	10 nm Ti + 60 nm Nb
D	PMMA ($t \sim 300 \text{ nm}$)	1 min O ₂ + 15 min Ar	10 nm Ti + 60 nm Nb

Protocollo	o Coating	Pulizia superfici	Metallo depositato	
А	MMA-MAA/PMMA $(t \sim 700 \text{ nm})$	5 min Ar	70 nm Nb	
В	PMMA ($t \sim 300 \text{ nm}$)	1 min O ₂ + 5 min Ar	Rimuove i res polimero dop (EBL) e lo svi	sidui di oo la litografia luppo
С	PMMA $(t \sim 300 \text{ nm})$	1 min O ₂ + 5 min Ar	10 nm Ti + 60 nm Nb	
D	PMMA $(t \sim 300 \text{ nm})$	1 min O ₂ + 15 min Ar	10 nm Ti + 60 nm Nb	

Protocollo	Coating	Pulizia superfici	Metallo depositato
А	MMA-MAA/PMMA	5 min Ar	70 nm Nb
В	$(t \sim 700 \text{ nm})$ PMMA $(t \sim 300 \text{ nm})$	1 min O ₂ + 5 min Ar	Contatti Ohmici di buona qualità fra titanio e bP [1]
С	PMMA ($t \sim 300 \text{ nm}$)	1 min O ₂ + 5 min Ar	10 nm Ti + 60 nm Nb
D	PMMA $(t \sim 300 \text{ nm})$	1 min O ₂ + 15 min Ar	10 nm Ti + 60 nm Nb

[1] F Telesio *et al.* 2020 *Nanotechnology* **31** 334002

Protocoll	o Coating	Pulizia superfici	Metallo depositato
А	MMA-MAA/PMMA $(t \sim 700 \text{ nm})$	5 min Ar	70 nm Nb
В	PMMA $(t \sim 300 \text{ nm})$	1 min O ₂ + 5 min Ar	70 nm Nb
С	PMMA $(t \sim 300 \text{ nm})$	Rimuove un maggiore strato di ossido sopra il bP prima di depositare il metallo	
D	PMMA (t ~ 300 nm)	$1 \min O_2$	10 nm Ti + 60 nm Nb

a) Giunzione

b) Hall bar

c) TLM

Outline:

- Superconduttività e giunzioni SNS
- Black-Phosphorus
- Protocolli di fabbricazione

Setup sperimentale

Risultati sperimentali

Conclusioni e prospettive future

Criostato ³He

➤ Criostato Janis ad ³He

 $> T_{min} = 300 \text{ mK}$

 \succ Magnete: $B_{max} = 9 T$

> p = 10⁻⁶ mbar

- Permette la misura di più dispositivi in un minor tempo
- Tre temperature raggiungibili:
 1. T_{ambiente} = 300 K
 2. T_{LN2} = 77 K
 3. T_{4He} = 4.2 K

 \succ p = 10⁻⁵ mbar

Outline:

- Superconduttività e giunzioni SNS
- Black-Phosphorus
- Protocolli di fabbricazione
- Setup sperimentale

> Risultati sperimentali

Conclusioni e prospettive future

Caratterizzazione del bP

- → G ∝ σ = neµ ↓ Densità di carica: n(V_g)
- Due regioni:
 - 1. Accumulazione
 - 2. Deplezione

Caratterizzazione del bP

Caratterizzazione del bP

Mobilità del bP

Mobilità

- La mobilità aumenta al diminuire della temperatura
- L'aumento della durata dell'Ar plasma (protocollo D) ha mantenuto la qualità del bP

· Media per ogni temperatura

Caratteristiche I-V

Dipendenza dalla Temperatura

Contatti <u>Ohmici</u> a 300 K e a 77 K \downarrow V = RI

Caratteristiche I-V

Dipendenza dalla Temperatura

- Non-linearità diminuendo la temperatura
 - \Rightarrow Barriera di potenziale all'interfaccia

Caratteristiche I-V

Dipendenza dalla Temperatura

Non-linearità diminuendo la temperatura
 ⇒ Barriera di potenziale all'interfaccia

Dipendenza dalla Tensione di gate

 $V_g = -80 V$

 $V_g = -60 V$

Misura a 2 fili

$$R_{C} + R_{bP})I$$

$$R_{C} + R_{bP} = -20V$$

2

$$T = 4.2 \text{ K}$$

$$-100-75-50-25 \quad 0 \quad 25 \quad 50 \quad 75 \quad 100$$

$$I [nA]$$

Minima resistenza di contatto per un sistema 2D:

$$\rightarrow R_{C}^{\min}W[k\Omega \cdot \mu m] \sim \frac{h}{2e^{2}k_{F}} \sim \frac{0.026}{\sqrt{n_{2D}[10^{13}cm^{-2}]}}$$

► Modello di Drude → $n_{2D} = \sigma / e\mu$ $\sigma \equiv G_S = G \frac{L}{W}$

Resistenza Differenziale

⇒ Non si osserva un regime superconduttivo

Excess o Deficit Current?

≻ Andreev reflection \Rightarrow I_{exc}

 \succ Normal reflection \Rightarrow I_{def}

Outline:

- Superconduttività e giunzioni SNS
- Black-Phosphorus
- Protocolli di fabbricazione
- Setup sperimentale
- Risultati sperimentali

Conclusioni e prospettive future

<u>Conclusioni</u>

> La qualità del bP si è mantenuta cambiando il protocollo di fabbricazione.

- Miglioramento della qualità del superconduttore: aumento di T_C del 23% fra il protocollo A e il protocollo D.
- > Diminuzione di un'ordine di grandezza di $\overline{R_CW}$ fra il protocollo A e il protocollo D.
- > Valori di R_CW che si avvicinano al quantum limit.

Protocollo di fabbricazione molto promettente per ottenere contatti Ohmici di qualità su dispositivi basati sul bP

→ Protocollo di fabbricazione applicabile anche ad altri materiali 2D instabili in condizioni ambientali (GeSe)

Prospettive Future

- Proseguire sulla strada tracciata dal protocollo D aumentando ulteriormente la durata dell'Ar plasma
- Minimizzare ulteriormente la degradazione del bP esfoliando in una glove-box e incapslulando i fiocchi in h-BN (hexagonal Boron Nitride)
- Studiare una singola interfaccia SN

Chen X. et al., Nat Commun 6, 7315 (2015).

Prospettive Future

- Proseguire sulla strada tracciata dal protocollo D aumentando ulteriormente la durata dell'Ar plasma
- Minimizzare ulteriormente la degradazione del bP esfoliando in una glove-box e incapslulando i fiocchi in h-BN (hexagonal Boron Nitride)
- Studiare una singola interfaccia SN
- Studiare il trasporto di supercorrente in funzione dell'orientazione degli elettrodi e della tensione di gate

Xia F. et al., Nat Commun 5, 4458 (2014).

Grazie per l'attenzione!