

Nanowire week

Chamonix, France, April 25 – 29, 2022

Free-standing InSb nanoflags for quantum device applications

Isha Verma¹, <u>Valentina Zannier</u>¹, Sedighe Salimian¹, Stefan Heun¹, Francesca Rossi², Daniele Ercolani¹, Fabio Beltram¹, and Lucia Sorba¹

¹ NEST-Istituto Nanoscienze CNR-Scuola Normale Superiore di Pisa, Italy

² IMEM-CNR, Parma, Italy

isha.verma@sns.it

Motivation

InSb:

Small bandgap, low electron effective mass, high electron mobility, high Landè g-factor and strong spin-orbit interaction

ightarrow promising material for optoelectronics, thermoelectrics, spintronics and quantum computing

- > Large lattice mismatch with all other III-Vs \rightarrow difficult integration of defect-free InSb in planar epitaxy
- > Sb acts as an surfactant \rightarrow difficult to control/tune the InSb morphology during the growth

Free-standing InSb (1D and 2D)

Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets

D. Pan,[†] D. X. Fan,[‡] N. Kang,[‡] J. H. Zhi,[‡] X. Z. Yu,[†] H. Q. Xu,^{**‡} and J. H. Zhao^{**†}

Increasing Sb flux

Adv. Mater. 31 (2019) 1808181

Bottom-Up Grown 2D InSb Nanostructures

Sasa Gazibegovic,* Ghada Badawy,* Thijs L. J. Buckers, Philipp Leubner, Jie Shen, Folkert K. de Vries, Sebastian Koelling, Leo P. Kouwenhoven, Marcel A. Verheijen, and Erik P. A. M. Bakkers

Nano Lett. 16 (2016) 834

OUR GOALS: - morphology control of high quality InSb nanostructures by tuning the growth parameters - develop a directional growth protocol to achieve free standing InSb nanoflags (2D) on NW stems

OUR APPROACH: Au assisted Chemical Beam Epitaxy using Au nanoparticle from colloidal solutions

Morphology control of InSb nanostructures

Directional InSb growth

With sample rotation uniform growth

Top-view

- InAs NWs have WZ crystal structure with 6 equivalent {112} sidewalls
- InSb has ZB crystal structure with 6 equivalent {110} sidewalls

Sample alignment for directional InSb growth:

Free-standing InSb nanoflags (NFs)

Free-standing InSb nanoflags (NFs)

- Defect-free ZB crystal structure
- Stoichiometric composition
- Relaxed lattice parameter

Longer InSb growth time

Temperature (°C)

Increasing InSb growth time

InSb NFs dimension Length= $2.8 \pm 0.2 \ \mu m$ Width= $470 \pm 80 \ nm$ Thickness= $105 \pm 20 \ nm$

Using tapered and more robust InP NW stems, we could achieve bigger InSb NFs

Larger InSb nanoflags

InP NWs have mixed WZ/ZB crystal structure, but still <112> sidewalls

STEM-HAADF image and corresponding HRTEM images show defect-free InSb ZB crystal structure.

Transport measurements

Channel width (width between contacts 1-3 and 2-4)=325 nm Channel length (1-2 and 3-4)=1.5 μ m. The NF thickness is ~100 nm. Contacts: 10 nm Ti/190 nm Au Substrate: Si/SiO₂

Hall-bar device

Injected current VS BG voltage @ 4.2 K

Four-probe field-effect mobility: 28000 cm²V⁻¹s⁻¹ Nanoflags are n-type

Transport measurements

Ballistic InSb NFs-based Josephson junction devices

10 nm Ti/150 nm Nb Substrate: Si/SiO₂

L = 200 nm W = 700 nm d = 100 nm

 $T_{c} = 8.44 \text{ K}$ $\Delta = 1.76 \text{ k}_{B}T_{c} = 1.28 \text{ meV}$

Ballistic regime! Mean free path λ_e > length L of the junction, $\lambda_e > L$.

Proximity induced superconductivity 50 nA supercurrent

Further info:

S. Salimian et al. "Gate-controlled supercurrent in ballistic InSb nanoflag Josephson junctions" *Appl. Phys. Lett.*, 119, no. 21, 2021 doi: 10.1063/5.0071218

Decreasing V_{bq} below 20 V the supercurrent decreases and it disappears at 5 V

Gate tunable supercurrent

Conclusions

- Finding the parameters that affect axial and radial growth is important for controlling and tuning the InSb nanostructure morphology
- Using tapered NW stem and precise orientation (RHEED pattern) allow to achieve uniformly thin and large NFs
- Electron Hall mobility of about 29500 cm²/Vs Mean free path up to 500 nm.
- NFs-based Josephson junction devices showed gate tunable supercurrent
- InSb NFs: versatile and convenient 2D platform for advanced quantum technologies.

Thanks to...

Isha Verma Ph.D. student

e-mail: isha.verma@sns.it

Daniele Ercolani

Lucia Sorba

TEM Characterization

Francesca Rossi

Sedighe Salimian

Stefan Heun

This research activity was partially supported by the SUPERTOP project, QUANTERA ERA-NET Cofound in Quantum Technologies (H2020 Grant No. 731473) and by the FET-OPEN project AndQC (H2020 Grant No. 828948).

Thank you for your attention!