

Free-standing InSb nanostructures: growth, morphology control and electrical characterization

<u>Valentina Zannier</u>¹, Isha Verma¹, Sedighe Salimian¹, Stefan Heun¹, Francesca Rossi², Daniele Ercolani¹, Fabio Beltram¹, and Lucia Sorba¹

¹ NEST-Istituto Nanoscienze CNR-Scuola Normale Superiore di Pisa, Italy

² IMEM-CNR, Parma, Italy

valentina.zannier@nano.cnr.it

Outline

- **InSb nanostructures**: motivation and challenges
- **InSb morphology control** on InAs nanowire stems: nanowires (1D), nanoflags (2D), nanocubes (3D)
- **Directional growth**: results and modelling
- InSb nanoflags: structural and electrical properties

Motivation

InSb:

 Small bandgap, low electron effective mass, high electron mobility, high Landè g-factor and strong spin-orbit interaction

 promising material for optoelectronics, thermoelectrics, spintronics and quantum computing

- > Large lattice mismatch with all other III-Vs → difficult integration of defect-free InSb in planar epitaxy
- > Sb acts as a surfactant \rightarrow difficult to control/tune the InSb morphology during the growth

Free-standing InSb nanostructures:

- Defect-free growth of heterostructures
- ✓ High surface/volume ratio
- ✓ Carriers confinement

Heteroepitaxy: bulk crystal vs nanostructures

Motivation

InAs/InSb nanowire heterostructures

Free-standing InSb nanostructures (1D)

(2D)

Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets

D. Pan, $^{\uparrow}$ D. X. Fan, ‡ N. Kang, ‡ J. H. Zhi, ‡ X. Z. Yu, $^{\uparrow}$ H. Q. Xu, *,‡ and J. H. Zhao $^{\ast,\uparrow}$

Twin-Induced InSb Nanosails: A Convenient High Mobility Quantum System

María de la Mata,[‡] Renaud Leturcq.^{a,‡,§} Sébastien R. Plissard,^{||} Chloé Rolland,[‡] César Magén,[⊥] Jordi Arbiol,^{a,†,#} and Philippe Caroff^{a,‡,V}

Nano Lett. 16 (2016) 825

Bottom-Up Grown 2D InSb Nanostructures

Sasa Gazibegovic,* Ghada Badawy,* Thijs L. J. Buckers, Philipp Leubner, Jie Shen, Folkert K. de Vries, Sebastian Koelling, Leo P. Kouwenhoven, Marcel A. Verheijen, and Erik P. A. M. Bakkers

h

Adv. Mater. 31 (2019) 1808181

Nano Lett. 16 (2016) 834

Our approach

OUR GOALS: - morphology control of high quality InSb nanostructures by tuning the growth parameters - develop a directional growth protocol to achieve free standing InSb nanoflags on NW stems

OUR APPROACH: Au assisted Chemical Beam Epitaxy using Au nanoparticle from colloidal solutions

CBE at NEST: Riber Compact-21 CBE system Metal-organic precursors: Group III : TMIn, TEGa, TMAI Group V : TBAs, TBP, TDMASb, TMSb n-doping: TBSe VLS growth occurs when a liquid alloy droplet starting from a metal nanoparticle (NP) becomes supersaturated with material from a gaseous reactant. The material then precipitates from the solidliquid interface to form a nanowire.

Morphology control of InSb nanostructures

T_{InAs}: 385°C

Low T enhances the radial growth and reduces the axial growth

InSb nanowires

Temperature (°C) **TBAs** TMIn TMSb ΔT = -20°C TINA † ΔT TInSt Time ⊢ 1 (min) 30' Ramping 45' InAs NW InSb to growth T growth growth 0.6/2.3 0.6/1.5

With sample rotation uniform InSb growth

InSb: <110> zone axis InAs: <2-1-10> zone axis

Top-view: NW cross-section

- InAs NWs have WZ crystal structure with 6 equivalent {112} sidewalls
- InSb has ZB crystal structure with 6 equivalent {110} sidewalls

D. Ercolani el al. *Nanotechnology* 20, 505605 (2009) L. Lugani el al. *Cryst. Growth Des.*, 10, 4038 (2010)

Directional InSb radial growth

Free-standing InSb nanoflags (NFs)

165

Nano Lett. 16 (2016) 834

Free-standing InSb nanoflags (NFs)

Free-standing InSb nanoflags (NFs)

145° aperture angle

- Defect-free ZB crystal structure
- Stoichiometric composition
- Relaxed lattice parameter

160° aperture angle

- Still too small for practical use (multi-contact devices)

Longer InSb growth time

Temperature (°C)

Increasing InSb growth time

InAs stem bending and TMSb etcing

InSb NFs dimension Length= $2.8 \pm 0.2 \mu m$ Width= $470 \pm 80 nm$ Thickness= $105 \pm 20 nm$

Using tapered and more robust InP NW stems, we could achieve bigger InSb NFs

Larger InSb nanoflags

InP NWs have mixed WZ/ZB crystal structure, but still <112> sidewalls

Lower yeld, but bigger NFs

STEM-HAADF image and corresponding HRTEM images show defect-free InSb ZB crystal structure.

Morphological evolution of InSb NFs in regular arrays

Substrate preparation

Selective area + VLS directional growth

Pitch AND Sb projection in <112> direction

Measured geometrical parameters

Thickness from top-view images Length and Width from tilted images (45°)

Growth modelling

InSb NF length vs growth time for different pitches

- <u>Axial growth rate is higher at the beginning,</u> then decreases.
- Lower axial growth rates for smaller pitches due to shadowing or competition
- For larger pitches (a ≥ 700 nm) the NF lengths are almost independent of the pitch, indicating no competition above this threshold.

Fitting is done for $\lambda_{In} = 724$ nm at a = 500 nm, with $A = 0.158 \text{ min}^{-1}$, B = 1 nm/min, and $C = 0.013 \text{ min}^{-1}$

- Length evolution can be qualitatively explained by considering the In-limited
 VLS axial growth rate containing two contributions:
 - (1) the direct impingement
- (2) In adatom diffusion on the sidewalls.
- Surface diffusion of In adatoms from the substrate can be neglected as InP NW is ~1.2 µm long.
 - (1) is constant, (2) is higher at L< λ_{In}
 → For L> λ_{In} axial growth rate becomes constant

SOLUTIONS

$$L = \frac{B}{A}(e^{At} - 1), \ L \le \lambda_{In};$$

$$L = \lambda_{In} + (C\lambda_{In} + B)(t - t_0), \ L > \lambda_{In}$$

- B describes direct impingement of In atoms onto catalyst surface. A and C stand for the efficiencies of In adatom collection from the NW sidewalls (different in the 2 stages of the growth).
- t_0 is the moment in time at which the NF length reaches λ_{In} .

Growth modelling

- Linear behavior for larger pitches. Sublinear for smaller pitches, T more than W.
- VS radial growth rate is Sb limited. If there were only direct Sb flux, T would be constant.
- We have to take into account **direct Sb flux** (directional) and **re-emitted Sb flux** (scattering of Sb atoms from NF sidewalls: non-directional, fully shadowed at smaller pitches)
- <u>T increases only due to the re-emitted flux, while W has both contributions from re-emitted</u> flux and from direct impingement of Sb flux on the 2 front facets (Δ W).
- W/T ratio can be increased by decreasing the pitch (shadowing suppresses re-emitted flux).

Thickness and width can be decoupled when re-emitted flux is completely suppressed!

NFs transport measurements

Channel width (width between contacts 1-3 and 2-4)=325 nm Channel length (1-2 and 3-4)=1.5 μ m. The NF thickness is ~100 nm. Contacts: 10 nm Ti/190 nm Au Substrate: Si/SiO₂

Hall-bar device

Source-drain current VS backgate voltage @ 4.2 K

NFs transport measurements

Ballistic InSb NFs-based Josephson junction devices

10 nm Ti/150 nm Nb

 $\Delta = 1.76 \text{ k}_{\text{B}}\text{T}_{\text{c}} = 1.28 \text{ meV}$

Substrate: Si/SiO₂

L = 200 nm

W = 700 nm

d = 100 nm

 $T_{c} = 8.44 \text{ K}$

Ballistic regime! Mean free path λ_e > length L of the junction, $\lambda_e > L$.

50 nA supercurrent

Further info:

S. Salimian et al. "Gatecontrolled supercurrent in ballistic InSb nanoflag Josephson junctions" *Appl. Phys. Lett.*, 119, no. 21, 2021 doi: 10.1063/5.0071218

Color plot of the differential resistance

Conclusions

- Finding the parameters that affect axial and radial growth is important for controlling and tuning the nanostructure morphology
- Directional growth and more robust InP NW stems were employed to achieve large single-crystalline NFs
- A simplified growth model was developed, allowing for semi-quantitative description of the NF morphology evolution.
- Electron Hall mobility of about 29500 cm²/Vs Mean free path upto 500 nm.
- NFs-based Josephson junction devices showed gate tunable supercurrent
- InSb NFs: versatile and convenient 2D platform for advanced quantum technologies.

Thanks to...

Isha Verma Ph.D. student

e-mail: isha.verma@sns.it

Daniele Ercolani

Lucia Sorba

TEM Characterization

Francesca Rossi

Transport Measurements

Sedighe Salimian

Stefan Heun

Theoretical Modeling

Vladimir Dubrovskii

This research activity was partially supported by the **SUPERTOP** project, QUANTERA ERA-NET Cofound in Quantum Technologies (H2020 Grant No. 731473) and by the FET-OPEN project **AndQC** (H2020 Grant No. 828948).

Thank you for your attention!