

Josephson diode effect in high-mobility InSb nanoflags

Bianca Turini

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro, Pisa, Italy

Non-reciprocity in condensed matter systems

InSb nanoflags for advanced devices

Nanoflag-based Josephson junctions

Josephson diode effect in InSb nanoflags

Non-reciprocity in condensed matter systems

InSb nanoflags for advanced devices

Nanoflag-based Josephson junctions

Josephson diode effect in InSb nanoflags

The p-n junction is at the basis of classical electronics.

Magneto-chiral anisotropy:

$$R = R_0 (1 + \gamma_{MCA} \, \hat{e}_z \vec{B} \times \vec{I})$$

- Non-linear effect
- TRS-breaking required
- Elusive in CM systems

$$\gamma_{MCA}\left(\frac{E_{SOI}}{E_G}\right) \sim 10^{-3} \cdot 10^{-2} \text{ T}^{-1} \text{ A}^{-1}$$

Rikken et al., *Phys. Rev. Lett.* 87, 236602

• Superconducting order defines a new

energy scale:

 $E_G \gg \Delta \sim meV$

• MCA is strongly enhanced (10^5) in the

resistive state

• What happens to the supercurrent?

SUPERCURRENT DIODE EFFECT

National Enterprise for nanoScience and nanoTechnology

Wakatsuki, R. et al., Sci. Adv. 3, e1602390 (2017)

Article

Observation of superconducting diode effect

https://doi.org/10.1038/s41586-020-2590-4	Fuyuki Ando ¹ , Yuta Miyasaka ¹ , Tian Li ¹ , Jun Ishizuka ² , Tomonori Arakawa ^{3,4} , Yoichi Shiota ¹ ,		
Received: 14 March 2020	Takahiro Moriyama¹, Youichi Yanase² & Teruo Ono¹⁴⊠		
Accepted: 23 June 2020			
Published online: 19 August 2020	Nonlinear optical and electrical effects associated with a lack of spatial inversion		
Check for updates	symmetry allow direction selective propagation and transport of quantum particles, such as photons ¹ and electrons ^{2–9} . The most common example of such nonreciprocal		

nature nanotechnology

ARTICLES https://doi.org/10.1038/s41565-021-01009-9

Check for updates

Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions

Christian Baumgartner^{1,8}, Lorenz Fuchs^{1,8}, Andreas Costa[©]², Simon Reinhardt[®]¹, Sergei Gronin^{3,4}, Geoffrey C. Gardner[®]^{3,4}, Tyler Lindemann^{4,5}, Michael J. Manfra[®]^{3,4,5,6,7}, Paulo E. Faria Junior², Denis Kochan², Jaroslav Fabian[®]², Nicola Paradiso[®]¹[∞] and Christoph Strunk[®]¹

10

400

V(ILV)

Twisted bilayer graphene

Diez-Merida et al., arXiv (2021)

Topological semimetal (NiTe₂)

Van der Waals materials

Bauriedl et al., Nat Commun 13, 4266 (2022)

Wu et al., Nature 604, 653–656 (2022)

- Time-reversal breaking mechanism
- Broken inversion symmetry
- Robust superconducting phase

Ideal candidate: strong SOI and large effective g-factor

SNS junction + SOI + Zeeman field

Non-reciprocity in condensed matter systems

InSb nanoflags for advanced devices

Nanoflag-based Josephson junctions

Josephson diode effect in InSb nanoflags

not only for searching Majorana zero modes!

InSb nanowires:

Nano Lett. 2019, 19, 6, 3575–3582

500 nn

0

500 nm

Nat Commun 10, 3764 (2019)

Twin-Induced InSb Nanosails: A Convenient High Mobility Quantum System

María de la Mata,[†] Renaud Leturcq,^{*,‡,§} Sébastien R. Plissard,^{||} Chloé Rolland,[‡] César Magén,[⊥] Jordi Arbiol,^{*,†,#} and Philippe Caroff^{*,‡, ∇}

Nano Lett. 16 (2016) 825

Bottom-Up Grown 2D InSb Nanostructures

Sasa Gazibegovic,* Ghada Badawy,* Thijs L. J. Buckers, Philipp Leubner, Jie Shen, Folkert K. de Vries, Sebastian Koelling, Leo P. Kouwenhoven, Marcel A. Verheijen, and Erik P. A. M. Bakkers

Adv. Mater. 31 (2019) 1808181

Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets

D. Pan, † D. X. Fan, ‡ N. Kang, ‡ J. H. Zhi, ‡ X. Z. Yu, † H. Q. Xu, *,‡ and J. H. Zhao *,†

Nano Lett. 16 (2016) 834

Configuration A Configuration B Sb beam projection Sb beam \perp to {110} projection tapered InP nanowires are used as *stems* ⊥ to {112} (a) <112> (c) (b) InP **RHEED pattern from InP NW** <110> along <110> InP InP InSb InSb In In the 2D shape is obtained with directional fluxes Sb Sb

National Enterprise for nanoScience and nanoTechnology

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825

Isha Verma

• defect-free crystal

Nanoflags: $t \sim 100 \text{ nm}$ $W \sim 500 \text{ nm}$ $L \sim 2 \mu \text{m}$

National Enterprise for nanoScience and nanoTechnology

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825

Sample geometry: $t \sim 100 \text{ nm}$ $W \sim 325 \text{ nm}$ $L \sim 1.5 \mu \text{m}$

Leads: Ti/Au 10/190 nm

Substrate: Si/SiO₂

National Enterprise for nanoScience and nanoTechnology

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825

Field-effect : n-type conduction $\mu_{FE} = 2.8 \times 10^4 \text{ cm}^2/\text{Vs}$

I. Verma et al., ACS Applied Nano Materials 4 (2021) 5825

Non-reciprocity in condensed matter systems

InSb nanoflags for advanced devices

Nanoflag-based Josephson junctions

Josephson diode effect in InSb nanoflags

Sedighe Salimian

NF-based Josephson junction

S. Salimian et al., Appl. Phys. Lett. 119, 214004 (2021)

Deposition of superconducting leads 150/10 nm Nb/Ti Super-normal-super junction $T_c = 8.44 \ K \Rightarrow \Delta = 1.28 \ \text{meV}$ $\Box \lambda_{MFP} = 500 \text{ nm}$ **BALLISTIC REGIME** $\Box L = 200 \text{ nm}$ SHORT JUNCTION $\Box \xi_{SC} = \hbar v_F / \Delta \sim 750 \text{ nm}$ National Enterprise for nanoScience and nanoTechnology T= 250 mK

Michal P. Nowak

Matching condition for $neV_n = 2\Delta^*$

The model:

Best fit:

M families of modes: i=1,..,M 1 N_i transport modes 40 (V_{BG}) τ_i transmission coefficient 0.94 Δ^* = superconducting gap 160 μ eV

T= 250 mK

IV characteristics vs. temperature

Non-reciprocity in condensed matter systems

InSb nanoflags for advanced devices

Nanoflag-based Josephson junctions

Josephson diode effect in InSb nanoflags

Main features:

- antysimmetric behavior
- linear around B = 0
- rounded maximum
- ➢ suppression at B ≥ 20 mT
- \succ θ -dependent polarity

Retrapping current asymmetry

Different magnitude: remappable on T-dependence

How to break the equivalence $I_c^+ = I_c^-$?

$$H = H_0 + H_{SOI(\alpha,\beta)} + H_Z + H_S$$

 α : Rashba SOI β : Dresselhaus SOI

$UH(\varphi)U^{\dagger} = H(-\varphi)$			
\overline{U}	Broken by		
$\mathcal{P}_{\mathbf{y}}\mathcal{P}_{\mathbf{x}}$	α, β, V_x, V_y	**	*
$\sigma_z \mathcal{P}_y \mathcal{P}_x$	B_x, B_y, V_x, V_y	\approx	*
$\sigma_x \mathcal{P}_y T$	B_x, α, V_y	\approx	*
$\sigma_y \mathcal{P}_y T$	B_y, β, V_y	\approx	*

$$\frac{\alpha + B_{ip,\perp}}{\beta + B_{ip,\parallel}}$$

Rasmussen et al., Physical Review B, 93(15) (2016)

Strong RSOC + s-wave SC +
$$B_{ip,\perp}$$
: $qv_F = g^* \mu_B B_{ip,\perp}$

 $\bar{q}\mu_0 B$

Dominant SIA

anomalous phase shift

 $\tilde{g}\mu_{\rm R}B_{\rm r}W/\hbar v_{\rm F} = \pi/2$

Josephson diode effect in ballistic junctions

$$\eta \equiv \frac{I_c^+ - |I_c^-|}{I_c^+ + |I_c^-|} = \frac{2qv_F}{\pi\Delta^*}$$

 α_{th} (InSb NF) ~ 8.5 T^{-1}

National Enterprise for nanoScience and nanoTechnology

Dolcini et al., PRB 92(3) (2015)

Hart et al., *Nature Physics*, *13*(1), 87–93(2017) Davydova et al., *Sci. Adv* (Vol. 8) (2022)

Josephson diode effect : ballistic junctions + anomalous CPR

Baumgartner et al., Nature Nanotechnology, 17(1), 39–44 (2022)

Dependence on the temperature

The idea: to tune the effective geometry and the SO coupling with side gates

Andrea Iorio

- Free-standing InSb nanoflags via CBE:
 - defect-free quasi-2D ZB structures
 - high-mobility devices
- InSb nanoflag-based Josephson junction:
 - high-trasparency of the interfaces
 - ballistic transport
 - gate-controlled supercurrent
- Josephson diode effect:
 - magnetic field-driven rectification
 - analysis of SOC in the system
 - evidence of finite-momentum superconductivity

Growth activity

Valentina Zannier

Lucia Sorba

Devices

Sedighe Salimian

Theory

Matteo Carrega

Aknowledgments:

Andrea Iorio

Elia Strambini

Francesco Giazotto

Transport measurements

Stefan Heun

