Defect-engineered graphene functionalization via cycloaddition reaction: towards a versatile platform for nanoscale devices and 3D heterostructures

~ Luca Basta ~

Internal Supervisor: Prof. Luigi Rolandi

Supervisors: Dr. Stefano Veronesi & Dr. Stefan Heun

PERFEZIONAMENTO IN NANOSCIENZE

1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity

National Enterprise for nanoScience and nanoTechnology

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes \rightarrow *defects engineering* via EBI

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes \rightarrow *defects engineering* via EBI
- 3) Patterned ML graphene flakes \rightarrow *deterministic* functionalization

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes \rightarrow *defects engineering* via EBI
- 3) Patterned ML graphene flakes \rightarrow *deterministic* functionalization
- 4) Epitaxial graphene \rightarrow functionalization and patterning of *higher quality graphene*

Research Focus

The focus of my research is the *covalent functionalization* of nanocomposite graphene systems with organic molecules, for future applications in the:

Research Focus

The focus of my research is the *covalent functionalization* of nanocomposite graphene systems with organic molecules, for future applications in the:

realization of *new sensors* exploiting organic molecules as active sites onto graphene surface (selective interaction with *target* molecules)

PhD candidate: Luca Basta

 \sim Introduction \sim

National Enterprise for nanoScience and nanoTechnology

Research Focus

The focus of my research is the *covalent functionalization* of nanocomposite graphene systems with organic molecules, for future applications in the:

- realization of *new sensors* exploiting organic molecules as active sites onto graphene surface (selective interaction with *target* molecules)
- implementation of *nano-catalyst materials* (nanoparticle bonding or metal-free configuration)

2

Research Focus

The focus of my research is the *covalent functionalization* of nanocomposite graphene systems with organic molecules, for future applications in the:

- realization of *new sensors* exploiting organic molecules as active sites onto graphene surface (selective interaction with *target* molecules)
- implementation of *nano-catalyst materials* (nanoparticle bonding or metal-free configuration)
- Fabrication of graphene/molecule/graphene heterostructures towards multilayer stacking and 3D graphene materials

National Enterprise for nanoScience and nanoTechnology

[Nanotube Superfiber Mater., 2014, 519]

- thermal conductivity
- Seebeck coefficient
- tensile strength
- ✤ flexibility
- ✤ carrier (ambipolar) mobility
- ✤ low noise
- ✤ wide-band optical response
- ✤ visual transparency

National Enterprise for nanoScience and nanoTechnology

[Nanotube Superfiber Mater., 2014, 519]

- thermal conductivity
- Seebeck coefficient
- \clubsuit tensile strength
- ✤ flexibility
- ✤ carrier (ambipolar) mobility
- ✤ low noise
- $\boldsymbol{\diamondsuit}$ wide-band optical response
- ✤ visual transparency
- $\times~$ low chemical reactivity
- \times no bandgap

National Enterprise for nanoScience and nanoTechnology

[Nanotube Superfiber Mater., 2014, 519]

The functionalization of graphene allows to finely *tune* or *enhance* the system's physical and chemical properties, resulting in a valuable synergistic combination:

- bandgap opening
- ✤ transfer doping
- ✤ improved dispersibility
- $\boldsymbol{\diamondsuit}$ new functionalities

Non-covalent functionalization, via van der Waals, electrostatic, or $\pi - \pi$ interactions:

- ✤ minimal perturbation
- $\times~$ limited stability and ordering

Non-covalent functionalization, via van der Waals, electrostatic, or $\pi - \pi$ interactions:

- minimal perturbation
- $\times~$ limited stability and ordering

Covalent functionalization, via sp^3 re-configuration of the C atoms (inserting heteroatoms or functional groups):

- more stable and controlled
- \times local loss of the electronic conjugation

Non-covalent functionalization, via van der Waals, electrostatic, or $\pi - \pi$ interactions:

- ✤ minimal perturbation
- $\times~$ limited stability and ordering

Covalent functionalization, via sp^3 re-configuration of the C atoms (inserting heteroatoms or functional groups):

- $\boldsymbol{\diamondsuit}$ more stable and controlled
- \times local loss of the electronic conjugation

1,3 – Dipolar Cycloaddition

1,3 – Dipolar Cycloaddition

Charge displacement between a dipolar compound (*azomethine ylide*)

1,3 – Dipolar Cycloaddition

Charge displacement between a dipolar compound (*azomethine ylide*) and a dipolarophile (C = C of graphene)

azomethine ylide

graphene

1,3 – Dipolar Cycloaddition

Charge displacement between a dipolar compound (*azomethine ylide*) and a dipolarophile (C = C of graphene) \rightarrow closing of a C-atoms ring:

1,3 – Dipolar Cycloaddition

Charge displacement between a dipolar compound (*azomethine ylide*) and a dipolarophile (C = C of graphene) \rightarrow closing of a C-atoms ring:

EXPERIMENTAL RESULTS

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes \rightarrow *defects engineering* via EBI
- 3) Patterned ML graphene flakes \rightarrow *deterministic* functionalization
- 4) Epitaxial graphene \rightarrow functionalization and patterning of *higher quality graphene*

GRAPHENE NANOSHEETS DISPERSION - DLS

From Dynamic Light Scattering experiments:

- ✤ NMP vs DMF
- $\boldsymbol{\diamondsuit}$ sonication vs homogenization

GRAPHENE NANOSHEETS DISPERSION - DLS

From Dynamic Light Scattering experiments:

- ✤ NMP vs DMF
- sonication vs *homogenization*

BETTER!

FASTER!

ЮН

functionalized rGO

-mon

ence and nanoTechnology

1,3-DC OF GNS AND RGO [A. Moscardini @ NEST] GNS in NMP/DMF, rGO in DFM: 0.2 mg/mL 150 °C – 120 h (stirring and N_2 flux) N-methylglycine, 3,4-dihydroxybenzaldehyde (150 °C - 120 h) GNS functionalized GNS N-methylglycine, 3,4-dihydroxybenzaldehyde (150 °C - 120 h) 0

rGO

PhD candidate: Luca Basta

XPS

The estimated efficiency of the functionalization is 1 azomethine ylide every 225 carbons in case of GNS in NMP, 1 ylide every 170 carbons for GNS in DMF, and 1 ylide every 110 carbons for rGO in DMF.

	C (%)	N(ylide) (%)	N(solv) (%)	0 (%)		
GNS in NMP	80.2	0.34	3.7	15.7		
GNS in DMF	82.1	0.45	4.6	12.8		
rGO in DMF	72.6	0.60	5.4	21.4		

Elemental composition of f-GNS and f-rGO

XPS

The estimated efficiency of the functionalization is 1 azomethine ylide every 225 carbons in case of GNS in NMP, 1 ylide every 170 carbons for GNS in **DMF**, and 1 ylide every 110 carbons for **rGO** in DMF.

Elemental composition of f GNS and f-rGO

	C (%)	N(ylide) (%)	N(solv) (%)	O (%)		
GNS in NMP	80.2	0.34	3.7	15.7		
GNS in DMF	82.1	0.45	4.6	12.8		
rGO in DMF	72.6	0.60	5.4	21.4		

RAMAN ANALYSIS

RAMAN ANALYSIS

RAMAN ANALYSIS

PhD candidate: Luca Basta

RAMAN ANALYSIS

PhD candidate: Luca Basta

RAMAN ANALYSIS

RAMAN ANALYSIS

 \sim Functionalization of dispersed GNS and rGO \sim

RAMAN ANALYSIS

 \sim Functionalization of dispersed GNS and rGO \sim

[L. Bellucci @ NEST]

DFT – POWER SPECTRUM

DFT – POWER SPECTRUM

C–N (stretching)

DFT - CHARGE LOCALIZATION

RESP (restrained electrostatic potential) derived partial atomic charges

 \sim Functionalization of dispersed GNS and rGO \sim

DFT - CHARGE LOCALIZATION

RESP (restrained electrostatic potential) derived partial atomic charges

 \succ 1,3-DC of GNS and rGO in the liquid phase

Conclusions -1)

- \succ 1,3-DC of GNS and rGO in the liquid phase
- Solvent comparison:
 - \succ NMP → better dispersion
 - \blacktriangleright DMF \rightarrow higher functionalization

Conclusions -1)

- \succ 1,3-DC of GNS and rGO in the liquid phase
- Solvent comparison (NMP vs DMF)
- Raman *signature* of the functionalization

Conclusions -1)

- \succ 1,3-DC of GNS and rGO in the liquid phase
- Solvent comparison (NMP vs DMF)
- Raman *signature* of the functionalization
- ➢ Higher reactivity of rGO due to the presence of *defects*

EXPERIMENTAL RESULTS

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes → *defects engineering* via EBI
- 3) Patterned ML graphene flakes \rightarrow *deterministic* functionalization
- 4) Epitaxial graphene \rightarrow functionalization and patterning of *higher quality graphene*

MECHANICALLY EXFOLIATED GRAPHENE

MECHANICALLY EXFOLIATED GRAPHENE

SUBSTRATE PREPARATION: Si/SiO_2

MECHANICALLY EXFOLIATED GRAPHENE

MECHANICALLY EXFOLIATED GRAPHENE

MECHANICALLY EXFOLIATED GRAPHENE

[F. Bianco @ NEST]

DEFECT PATTERNING

Via electron beam irradiation (EBI, the exposure of graphene sheet to focused beams of energetic electrons) structural defects are patterned into graphene:

RAMAN ANALYSIS no O₂ plasma I(D)/I(G)Raman map 3.5 0 2 3.0 2.5 2.5 (D)_{2.0} (D)/(Q)_{1.5} 5 (und) X 10 1.0 12.5 0.5 15 0.0 2 4 6 8 10 12 6 8 10 12 14 16 2 4 0 X (µm) Y (μm)

SUBSTRATE SURFACE TREATMENTS

PhD candidate: Luca Basta

SUBSTRATE SURFACE TREATMENTS

Monte Carlo

[F. Bianco @ NEST]

- EBI generates radicals at the interface
 D peak and charge transfer
- ✤ O_2 -plasma removes organic adsorbates
 - no transition zone

TRANSITION ZONE DOPING

TRANSITION ZONE DOPING

> Design of *defect patterning* via low-energy *EBI* (20 and 30 keV)

- > Design of *defect patterning* via low-energy *EBI* (20 and 30 keV)
- Substrate *surface cleaning* treatments comparison:
 - > only resist remover \rightarrow transition zone $(1 7 \,\mu m)$
 - ➢ O₂-plasma → no transition zone for low/medium doses

- Design of *defect patterning* via low-energy *EBI* (20 and 30 keV)
- Substrate *surface cleaning* treatments comparison:
 - > only resist remover \rightarrow transition zone $(1 7 \mu m)$
 - > O_2 -plasma \rightarrow no transition zone for low/medium doses
- In no-plasma-treated: wide defects zone and *doping*

- Design of *defect patterning* via low-energy *EBI* (20 and 30 keV)
- Substrate *surface cleaning* treatments comparison:
 - > only resist remover \rightarrow transition zone $(1 7 \,\mu\text{m})$
 - \triangleright O₂-plasma \rightarrow no transition zone for low/medium doses
- > In no-plasma-treated: wide defects zone and *doping*
- In plasma-treated: almost no defects zone and no doping

EXPERIMENTAL RESULTS

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes \rightarrow *defects engineering* via EBI
- 3) Patterned ML graphene flakes \rightarrow *deterministic* functionalization
- 4) Epitaxial graphene \rightarrow functionalization and patterning of *higher quality graphene*

Defect patterning of ML flakes

Designed defect patterning via EBI \rightarrow tailoring of the surface chemistry of graphene

 \sim Functionalization of patterned ML graphene flakes \sim

 \sim Functionalization of patterned ML graphene flakes \sim

 \sim Functionalization of patterned ML graphene flakes \sim

AFM of patterned graphene

PhD candidate: Luca Basta

AFM OF PATTERNED GRAPHENE

AFM of functionalized graphene

AFM of functionalized graphene

AFM of functionalized graphene

RAMAN OF FUNCTIONALIZED GRAPHENE

RAMAN OF FUNCTIONALIZED GRAPHENE

[L. Bellucci @ NEST]

DFT – POWER SPECTRUM

RAMAN OF FUNCTIONALIZED GRAPHENE

Microscope objective

Sample

Laser

0

LASER-INDUCED DESORPTION

Microscope objective

Sample

Laser

0

XY motorized stage

LASER-INDUCED DESORPTION

> Controlled and laterally-resolved *defects engineering* via EBI (step size: 100 nm)

- > Controlled and laterally-resolved *defects engineering* via EBI (step size: 100 nm)
- > Patterned graphene shows *enhanced adhesion* and *selectivity* towards 1,3-DC

- Controlled and laterally-resolved *defects engineering* via EBI (step size: 100 nm)
- Patterned graphene shows enhanced adhesion and selectivity towards 1,3-DC
- DFT simulation of the PS in agreement with the Raman spectra

- Controlled and laterally-resolved *defects engineering* via EBI (step size: 100 nm)
- > Patterned graphene shows *enhanced adhesion* and *selectivity* towards 1,3-DC
- > DFT simulation of the PS in agreement with the Raman spectra
- > Recovery of clean defected graphene indicates *reversibility* of the functionalization

Con

Patt

Recd

CONCLUSIONS – 3)

arXiv *preprint* (under review on JMC C)

Condensed Matter – Materials Science arXiv.org

Deterministic Covalent Organic Functionalization of Monolayer Graphene with 1,3-Dipolar Cycloaddition Via High Resolution Surface Engineering

Luca Basta¹*, Federica Bianco¹, Aldo Moscardini¹, Filippo Fabbri¹, Luca Bellucci¹, Valentina Tozzini¹, Stefan Heun¹, Stefano Veronesi¹‡

Abstract

Spatially-resolved organic functionalization of monolayer graphene is successfully achieved by combining lowenergy electron beam irradiation with 1,3-dipolar cycloaddition of azomethine ylide. Indeed, the modification of the graphene honeycomb lattice obtained via electron beam irradiation yields to a local increase of the graphene chemical reactivity. As a consequence, thanks to the high-spatially resolved generation of structural defects (\sim 100 nm), chemical reactivity patterning has been designed over the graphene surface in a well-controlled way. Atomic force microscopy and Raman spectroscopy allow to investigate the two-dimensional spatial distribution of the structural defects and the new features that arise from the 1.3 dipolar eveloped difficult confirming the spatial

oScience and nanoTechnology

EXPERIMENTAL RESULTS

- 1) Functionalization of dispersed GNS and rGO \rightarrow *defects* for chemical reactivity
- 2) ML graphene flakes \rightarrow *defects engineering* via EBI
- 3) Patterned ML graphene flakes \rightarrow *deterministic* functionalization
- 4) Epitaxial graphene \rightarrow functionalization and patterning of *higher quality graphene*

EPITAXIAL GRAPHENE

EG on SiC allows for direct STM and STS measurements \rightarrow atomic resolution

Control voltages for piezot

Distance contro

and scanning unit

Tunneling

ent amplifie

EPITAXIAL GRAPHENE

EG on SiC allows for direct STM and STS measurements \rightarrow atomic resolution

RAMAN OF PRISTINE EG

STM of functionalized EG

New structures!

RAMAN OF FUNCTIONALIZED EG

RAMAN OF FUNCTIONALIZED EG

AFM of Patterned EG

AFM of Patterned EG

Defects patterning on EG via low-energy (20 keV) EBI:

- \blacktriangleright dose array (from 10 to 120 mC/cm²)
- step size (from 100 to 500 nm)

QNM of Patterned EG - Adhesion

QNM OF PATTERNED EG - ADHESION

QNM OF PATTERNED EG - ADHESION

$$A_{patterned-BL-tip} \approx A_{BL-tip}$$

$$A_{ptr-MLEG-tip} - A_{MLEG-tip} = -0.39 \text{ nN}$$

$$A_{ptr-MLEG-tip} \approx A_{BL-tip}$$

QNM OF PATTERNED EG - ADHESION

$$A_{patterned-BL-tip} \approx A_{BL-tip}$$

$$A_{ptr-MLEG-tip} - A_{MLEG-tip} = -0.39 \text{ nN}$$

$$A_{ptr-MLEG-tip} \approx A_{BL-tip}$$
patterned-MLEG \approx BL

➤ 1,3-DC of near defect-free EG:

CONCLUSIONS – 4)

➤ 1,3-DC of near defect-free EG:

- > STM \rightarrow new structures with height of 2 15 Å
- > STS \rightarrow new structures with bandgap of 0.13 0.20 eV

CONCLUSIONS – 4)

- ➤ 1,3-DC of near defect-free EG:
 - > STM \rightarrow new structures with height of 2 15 Å
 - \succ STS \rightarrow new structures with bandgap of 0.13 0.20 eV
 - \succ Raman \rightarrow new peaks and shift

CONCLUSIONS -4)

- ➤ 1,3-DC of near defect-free EG:
 - > STM \rightarrow new structures with height of 2 15 Å
 - > STS \rightarrow new structures with bandgap of 0.13 0.20 eV
 - \succ Raman \rightarrow new peaks and shift
- Defect patterning of EG:

CONCLUSIONS -4)

- ➤ 1,3-DC of near defect-free EG:
 - > STM \rightarrow new structures with height of 2 15 Å
 - > STS \rightarrow new structures with bandgap of 0.13 0.20 eV
 - \succ Raman \rightarrow new peaks and shift
- Defect patterning of EG:
 - ≻ AFM \rightarrow controlled design
 - \succ QNM \rightarrow enhanced adhesion

PhD candidate: Luca Basta

> 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)

- > 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)
- Chemical signature via EDX/EELS and XPS + Raman spectroscopy and DFT-PS (new method of detection in case of low coverage)

- > 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)
- Chemical signature via EDX/EELS and XPS + Raman spectroscopy and DFT-PS
- Chemical reactivity enhancement in presence of structural defects

- > 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)
- Chemical signature via EDX/EELS and XPS + Raman spectroscopy and DFT-PS
- Chemical reactivity enhancement in presence of structural defects
- Laterally-resolved defect patterning of graphene via low-energy EBI

- > 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)
- Chemical signature via EDX/EELS and XPS + Raman spectroscopy and DFT-PS
- Chemical reactivity enhancement in presence of structural defects
- Laterally-resolved defect patterning of graphene via low-energy EBI
- > Selectivity by designing defect patterns and reversibility via laser irradiation

- > 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)
- Chemical signature via EDX/EELS and XPS + Raman spectroscopy and DFT-PS
- Chemical reactivity enhancement in presence of structural defects
- Laterally-resolved defect patterning of graphene via low-energy EBI
- > Selectivity by designing defect patterns and reversibility via laser irradiation
- \succ STM (morphology) and STS (LDOS) in EG

- > 1,3-DC of dispersed, exfoliated and epitaxial graphene systems (towards higher quality)
- Chemical signature via EDX/EELS and XPS + Raman spectroscopy and DFT-PS
- Chemical reactivity enhancement in presence of structural defects
- Laterally-resolved defect patterning of graphene via low-energy EBI
- > Selectivity by designing defect patterns and reversibility via laser irradiation
- \succ STM (morphology) and STS (LDOS) in EG
- Adhesion enhancement in patterned graphene

WHAT'S NEXT?

 \succ EG \rightarrow STM/STS investigation on patterned EG and after 1,3-DC of patterned EG

[Y. Vlamidis, A. Moscardini @ NEST]

- \succ EG \rightarrow STM/STS investigation on patterned EG and after 1,3-DC of patterned EG
- \succ New tailored ylide \rightarrow further functionalization towards applications at the nanoscale

WHAT'S NEXT?

- ➢ EG → STM/STS investigation on patterned EG and after 1,3-DC of patterned EG
- \succ New tailored ylide \rightarrow further functionalization towards applications at the nanoscale
- \succ Raman investigation \rightarrow doping vs strain, new tailored ylide

WHAT'S NEXT?

- \succ EG \rightarrow STM/STS investigation on patterned
- \succ New tailored ylide \rightarrow further functionalizatio
- > Raman investigation \rightarrow doping vs strain, nev
- Positioning of molecular pillars
 - \rightarrow spaced multilayer graphene systems:
 - ✤ gas storage (H_2)
 - ✤ sensing

 \sim People \sim

PhD candidate: Luca Basta

 \sim Thanks \sim

THANK YOU For Your Attention

"Magnus in magnis, maximus in minimis" - Augustine

