The influence of graphene curvature and
functionalization on hydrogen adsorption:
towards hydrogen storage devices
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I8 Hydrogen & energy
As a fuel, hydrogen has advantages: Hydrogen  Electron Oxygen

pe/\\//XQ

* high energy-to-mass ratio
e Hx+1/202—> HO AH=-2.96eV
* Non-toxic and “clean” (product = water)

* renewable

H oweve I’, hyd rog en |S N OT an ene rgy Anode Ca!;alyst Polymer elelectrolyte Cathode

membrane

source: it must be produced e.g. by
: : . Hydrogen fuel cell
electrolysis, needing +2.96 eV, with zero

balance with respect to energy production.
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C Hydrogen-fuelled vehicles
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Liquid Cryo-

hydrogen adsorption
LH2 Activated carbon
100 mat.wt% 6.5 mat.wt%
Operating temperature

Interstitial
metal hydride

ves Phase Comp./
 FeTiH,/ LaNigH,

2 mat.wt%

70-170°C

Hydrogen Storage

Compressed Alanate Salt-like
hydrogen metal hydride
" H : ’
CGH2 - NaAlH, MgH, | H,0
100 matwt%  55matwt% 7.5 matwt% 11 matwt%

330°C »» 1000°C

Targets for transport
applications not reached
yet:

P > 5.5 wt%

py >50kgH, /m3

P.,~1bar at T< 100°C

Compressed H,:

High pressure and
heavy container to
support such pressure

Solid State:
Physisorption
Chemisorption

Liquid H.:
Liquefation needs
energy and
consumes more
than 20% of the
recoverable energy
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@ Graphene for hydrogen storage
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« Graphene is lightweight, inexpensive, robust,
chemically stable

« Large surface area (~ 2600 m?/q)

* Functionalized graphene has been predicted to
adsorb up to 9 wt% of hydrogen

ﬁ o 3 Yang et al., PRB 79 (2009) 075431
8
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H storage In graphene

** Atomic hydrogen 3
chemisorption has a small
or negligible chemisorption
barrier =

feasible but H2 must be
cracked

>
>
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opping

% Chemisorbed
Ojss H, dimers or

Oc;
e O
%oy, O, clusters

Crac

=Y

** Physisorption weakly
bounds hydrogen =
acceptable storage densities
only at low temperatures
and/or high pressure
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*¢* Molecular hydrogen chemi(de)sorption has high barrier (theoretical estimate ~eV) =

chemisorbed H is stable for transportation etc, but catalytic mechanlsms are necessary

in the loading-release phases Nofianc Enderpriss for nanoSicience anc nancRechnology
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What Is Graphene?

A SINGLE layer of carbon atoms!

The atoms are arranged in a honeycomb lattice composed of two
intertwined equivalent sublattices.
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@ Graphene growth on SIC
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Graphene or thin graphite films form on SiC
surfaces upon annealing at high temperatures
as a result of SiC decomposition.

Bilayer of Si-C
tetrahedra

Graphene:
Ordered stacking
Si(0001) face = Good thickness control

Graphene:
Rotational disorder
C(0001) face = Poor thickness control
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Commercia Iiﬁ}gfgSiC:

- pblisbin_g__»s'c_i‘atches
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Induction heating

C. Coletti et al., Appl. Phys. Lett. 91,
061914 (2007)

bus grapf7
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Induction heating

K.Emtsev et al., Nature Mater. 8,
203 (2009)




®)
SARN=)

Graphene growth on SiC(0001)
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SiC

eSi -C eS| -C
Buffer Layer
Topologically identical atomic
carbon structure as graphene.
Does not have the electronic
band structure of graphene
due to periodic sp3 C-Si bonds.

Superstructure of both the
buffer layer and monolayer
graphene on the Si face
from the periodic interaction
with the substrate.

6\/3 X 6\/3

fionc El rise ) NAN( SL\ anc J Qr vT- 1NC ] I
F. Varchon, et al., PRB 77, 235412 (2008).

F. Varchon, et al., PRB 77, 235412 (2008). |= ” |:
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Bias: +1.7V
Current: 0.3nA

6V3 x 6V3 -
quasi-(6x6) —

S. Goler et al.: Carbon 51, 249 (2013).

Buffer Layer

FIG. 2. (Color online) Total charge density of the buffer layer on
SiC(001). (a) total charge density in the 6R3-SiC unit cell. (b) cross
section of the total charge density along the line defined in (a). The

| black dots that appear when the cross section goes through the

middle of an atom are due to the use of pseudopotentials (no core
electrons).

F. Varchon, et al., PRB 77, 235412 (2008).
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@ Monolayer Graphene
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6\3x6V3-Superstructure

Graphene

30 nm, 1V, 100 pA




@ ML: Micro-Raman

1500 2000 2500
Raman Shift [cm™]

Spectrum from 12um x 12um area Integrated intensity of 2D peak
SiC background subtracted Bright = ML graphene
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Graphene Curvature

« EXxploit graphene curvature for
hydrogen storage at room
temperature and pressure

National Enterprise for nanoScience and nano¥echnology
V. Tozzini and V. Pellegrini: J. Phys. Chem. C 115, 25523 (2011). Iﬁ ” |: @I
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Graphene Curvature
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« EXxploit graphene curvature for g rrryrTTTTTTITT™T™
hydrogen storage at room
temperature and pressure 1

« The hydrogen binding energy
on graphene is strongly
dependent on local curvature
and it is larger on convex parts
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V. Tozzini and V. Pellegrini: J. Phys. Chem. C 115, 25523 (2011). @ : :
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Graphene Curvature

PISARNI=1)

« Atomic hydrogen
spontaneously sticks on
convex parts; inverting
curvature H is expelled




@ H-dimers and tetramers

Para-dimer Ortho-dimer Tetramer
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(|2 H adsorption and desorption

120 + 120 - 120
i E 60 | E60
0
a Pristine graphene b Hydrogenated graphene C  After heating630° C d After heating 680° C
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RMS roughness
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DFT calculations
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- chemisorption of °

- /_—__\_____the first H atom -

reaction coordinate
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@ Functionalized Graphene
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* Functionalized graphene has been predicted to
adsorb up to 9 wt% of hydrogen

* Modify graphene with various chemical species,
such as calcium or transition metals (Titanium)

Lee et al., Nano Lett. 10 (2010) 793  Durgen et al.,, PRB 77 (2007) 085405
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ML graphene on SiC(0001)
with reconstruction

T. Mashoff et al.




@ Titanium island growth

L4

6% Coverage

_, _ E . ‘
53% Coverage 79% Coverage 100% Coverage
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@ Thermal desorption
CNRAND spectroscopy

) Deposmon of.dlff.erent Spectra for different Ti-coverages
amounts of Titanium

« Offering Hydrogen (D) 12f — ;go/
e (1x107 mbar for 5 min) oF — 53% 1
+ Heating sample with ° —ten |
constant rate (10K/s) up 6: — = i
to 550° C JE :
* Measuring mass- Deshrpt E

sensitive desorption with o,

0 100 200 300 400 500 600
a mass spectrometer Temperature (C)
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Peak fitting

Peak Fitting (0.67ML)
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All curves could be fitted nicely
with 2 peaks at 211C and 288 C
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Conclusions

* Graphene is a promising material for hydrogen storage

« Curvature-dependent adsorption and desorption of
hydrogen

— reusable hydrogen storage devices that do not depend on
temperature or pressure changes.

« Graphene functionalized by Ti:

— Stability of hydrogen binding at room temperature

— Hydrogen desorbes at moderate temperatures
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