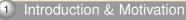
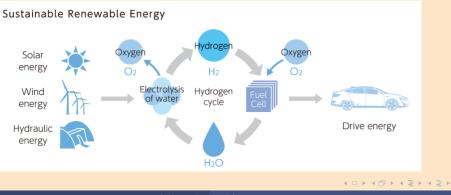
Hydrogen absorption in a novel three-dimensional graphene structure: Towards hydrogen storage applications

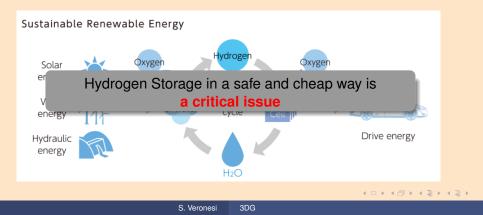
A. Macili,¹
Y. Vlamidis,^{1,2}
E. Pompei,¹
G. Pfusterschmied,³
M. Leitgeb,³
U. Schmid,³
S. Heun¹
and
S. Veronesi¹


¹NEST Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silestro 12, 56127 Pisa, Italy ²Department of Physical Science; Earth and Environment; University of Siena; via Roma 56; Siena; 53100 Italy ³Institute of Sensor and Actuator Systems; TU Wien; Vienna; 1040; Austria

Milano, CMD30-FisMat 2023, September 4 - 8



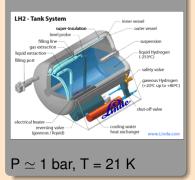
- Hydrogen and Graphene
- 2 Three-dimensional Graphene Structure
 - Graphene on Porous SiC
 - Hydrogen uptake


Hydrogen life cycle

- Fossil fuels \Rightarrow green house effect
- Renewables are intrinsically intermittent
- Energy storage
- H-Storage

Hydrogen life cycle

- Fossil fuels \Rightarrow green house effect
- Renewables are intrinsically intermittent
- Energy storage
- H-Storage

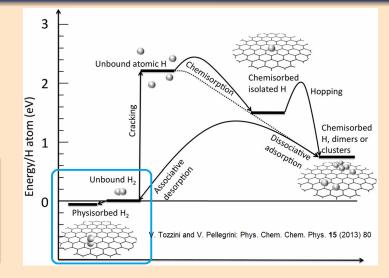

hydrogen storage techniques

High pressure tank

 $P \simeq 700$ bar established technology

Liquid H2 tank

Solid state storage

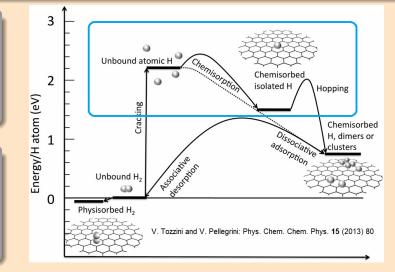

Introduction & Motivation

Three-dimensional Graphene Structure

Hydrogen and Graphene

Graphene for hydrogen storage

 Physisorption weakly bounds hydrogen ⇒ acceptable storage densities only at low temperatures and/or high pressure;

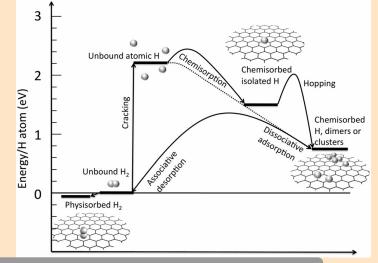


Introduction & Motivation

Hydrogen and Graphene

Graphene for hydrogen storage

- Atomic hydrogen chemisorption has a small or negligible chemisorption barrier ⇒ feasible but H₂ must be cracked;
- Physisorption weakly bounds hydrogen ⇒ acceptable storage densities only at low temperatures and/or high pressure;



Introduction & Motivation

Hydrogen and Graphene

Graphene for hydrogen storage

- Atomic hydrogen chemisorption has a small or negligible chemisorption barrier ⇒ feasible but H₂ must be cracked;
- Physisorption weakly bounds hydrogen ⇒ acceptable storage densities only at low temperatures and/or high pressure;

Molecular hydrogen chemi(de)sorption has high barrier (theoretical estimate $\sim eV) \implies$ chemisorbed H is stable , but catalytic mechanisms are necessary

2D vs 3D

2D materials are excellent model systems for optoelectronic applications, flexible electronics, graphene based sensors, biological applications,

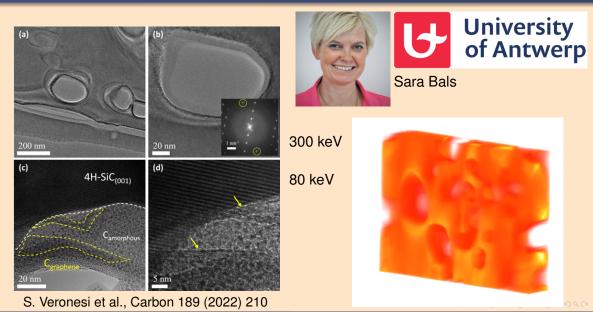
Would strongly benefit from a high surface-to-volume ratio and a **3D** structure: Catalysis , photoassisted water splitting, gas detection and storage, drug delivery, high performance electrodes, supercapacitors, battery cathodes, water treatment and filtration. Our choice is the use of porousified 4H-SiC(0001) wafer to grow epitaxial graphene by thermal decomposition in UHV environment around 1370° C, achieving a 3D arrangement conformal to the substrate, and preserving an high quality.


Graphene on Porous SiC Hydrogen uptake

SiC porousification

- Porous SiC from U. Schmid's group (TU Wien)
- Established wafer-scale technology
- $\circ\,$ Works on Si- and C-face of 4H-SiC(000 \pm 1)
- Control of local definition of pores and degree of porosity with depth
- Stacked layers of different porosity can be made
- Porous layer can be detached from wafer

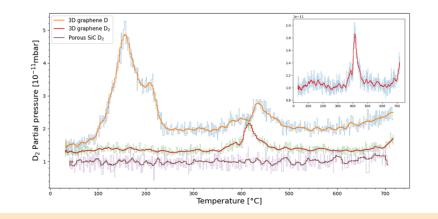
WIEN



M. Leitgeb et al., J. Phys. D 50 (2017) 435301

Three-dimensional Graphene Structure

Graphene on Porous SiC


TEM after Graphene growth

Graphene on Porous SiC Hydrogen uptake

RT hydrogen uptake

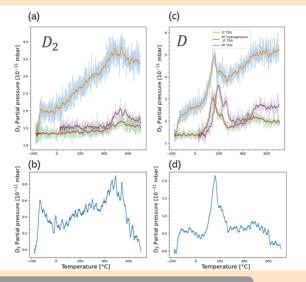


A. Macili et al., Appl. Surf. Sci. 615 (2023) 156375

S. Veronesi 3DG

Graphene on Porous SiC Hydrogen uptake

RT hydrogen uptake

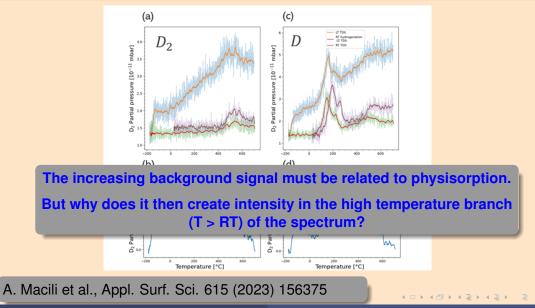


 $\textbf{Chemisorption} \Longrightarrow \textbf{chemical bond} \Longrightarrow \textbf{catalytic hydrogen-splitting}$

A. Macili et al., Appl. Surf. Sci. 615 (2023) 156375

Graphene on Porous SiC Hydrogen uptake

Low Temperature hydrogen uptake

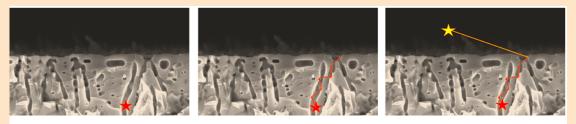

A. Macili et al., Appl. Surf. Sci. 615 (2023) 156375

▲□▶ ▲圖▶ ▲ 重▶ ▲ 重 ● のQ@

S. Veronesi 3DG

Graphene on Porous SiC Hydrogen uptake

Low Temperature hydrogen uptake



S. Veronesi 3DG

Three-dimensional Graphene Structure

Hydrogen uptake

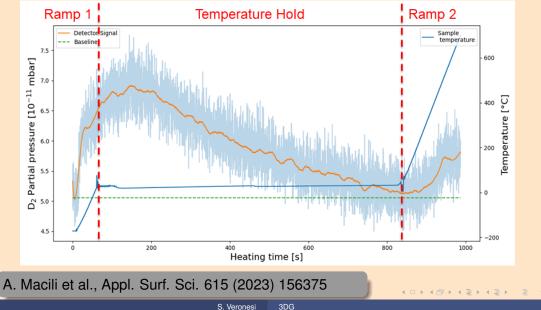
Delayed emission model

Desorption

 $\tau = \tau_0$ $T = T_p$ Diffusion

Detection

 $\tau = \tau_0 + \tau_d$ $T = T_p + \beta \tau_d$

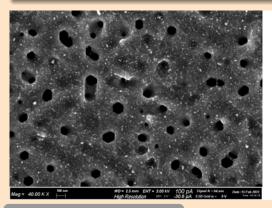

 $\tau = \tau_0 + \tau_d + \tau_{ex}$ $T = T_p + \beta(\tau_d + \tau_{ex})$

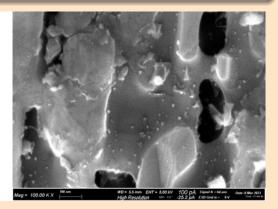
A. Macili et al., Appl. Surf. Sci. 615 (2023) 156375

Three-dimensional Graphene Structure

Hydrogen uptake

Delayed emission model




S. Veronesi

Graphene on Porous SiC Hydrogen uptake

Outlook: metal nanoparticles

- Pd nanoparticles made using PolyVinylPyrrolidone and ethylene glycol, then dispersed in ethanol
- Dimension in the range 3 to 12 nm (AFM)

E. Pompei unpublished

Conclusions

- Graphene is a promising material for hydrogen storage
- 3D arrangement of graphene in porous SiC
 - \Rightarrow Uniform high-quality graphene growth in the pores
 - \Rightarrow 200 times increase in active surface area
 - \Rightarrow Chemisorption after exposure to molecular hydrogen
 - \Rightarrow Enhancement of hydrogen storage performance by metal functionalization ?

Graphene on Porous SiC Hydrogen uptake

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ■ のQ@

Graphene on Porous SiC Hydrogen uptake

Thank you for your attention

Thursday 07 at 16:00, GS-22 room 26.1.5 Deterministic organic functionalization of exfoliated monolayer graphene via high-resolution surface engineering