

Rb-functionalized epitaxial graphene on SiC(0001)

Ferbel Letizia, Veronesi Stefano, Heun Stefan

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

Rb on Graphene - Motivation

Shin et al., Curr. Appl. Phys. 20 (2020) 484-488

Rb-intercalation

Kleeman et al., Phys. Rev. B 87 (2013) 195401

Watcharinyanon et al., Surf. Sci. 605 (2011) 1918-1922

Shin et al., Curr. Appl. Phys. 20 (2020) 484-488

Rb-intercalation

Kleeman et al., Phys. Rev. B 87 (2013) 195401

Watcharinyanon et al., Surf. Sci. 605 (2011) 1918-1922

Only LEED, PES No microscopy studies

Epitaxial Graphene on SiC(0001)

Epitaxial Graphene on SiC(0001)

Epitaxial Graphene on SiC(0001)

 $\begin{array}{c} 0 \text{ min Rb} \\ 6\sqrt{3} \times 6\sqrt{3} R30^{\circ} \end{array}$

0 min Rb $6\sqrt{3} \times 6\sqrt{3} R30^{\circ}$

1 min Rb Rb(2×2)

Step-terrace morphology still well recognizable

One-dimensional lines a few nm high form (red arrow)

1 min Rb deposition (2 \times 2)

SCUOLA

NORMALE Superiore

1 min Rb deposition (2 \times 2)

1 min Rb deposition (2 \times 2)

Moirè $(6\sqrt{3})$ is faintly visible and only in larger size STM images while the (2×2) superstructure is clearly distinguishable.

1 min Rb deposition (2 \times 2)

The (2×2) superstructure and at the same time the graphene lattice can be resolved.

3 min Rb deposition ($\sqrt{3} \times \sqrt{3}$)R30°

Moirè $(6\sqrt{3})$ is not present, not even faintly visible in larger size STM images. A $(\sqrt{3} \times \sqrt{3})$ R30° superstructure is present.

3 min Rb deposition ($\sqrt{3} \times \sqrt{3}$)R30°

The $(\sqrt{3} \times \sqrt{3})$ R30° superstructure and at the same time the graphene lattice can be resolved.

Model Rb(2×2)

The (2×2) has been associated in literature to Rb either on top or intercalated between the two graphene layers. Phase with Rb coverage 1/4 ML.

The graphene lattice can be resolved by STM. Both LEED and STM show the presence of the Moirè $(6\sqrt{3})$ superstructure thus suggesting that Rb is not intercalated below the buffer layer but rather between buffer layer and monolayer graphene.

The $(\sqrt{3} \times \sqrt{3})$ R30° has been associated in literature to AM either on top or intercalated between the two graphene layers. Phase with AM coverage 1/3 ML.

The graphene lattice can be resolved together with the Rb($\sqrt{3} \times \sqrt{3}$)R30° by STM. Thus Rb cannot be on top.

To obtain a Rb($\sqrt{3} \times \sqrt{3}$)R30° it is necessary more than double the amount we need to obtain a Rb(2 \times 2) and no Moirè ($6\sqrt{3}$) superstructure can be observed neither at LEED nor at STM.

It has been reported for some metal that intercalation below the buffer layer can create a ($\sqrt{3} \times \sqrt{3}$)R30°. However, to obtain a Rb($\sqrt{3} \times \sqrt{3}$)R30° it is necessary more than double the amount we need to obtain a Rb(2×2).

This option is the most plausible. Both by LEED and STM no Moirè $(6\sqrt{3})$ superstructure can be observed. In STM the graphene lattice is resolved together with the $(\sqrt{3} \times \sqrt{3})$ R30°. Moreover to obtain a Rb $(\sqrt{3} \times \sqrt{3})$ R30° it is necessary more than double the amount we need to obtain a Rb (2×2) .

• LEED and STM allows for the first evidence of Rb intercalated monolayer graphene.

- LEED and STM allows for the first evidence of Rb intercalated monolayer graphene.
 - Two Rb ordering have been observed, i.e. (2×2) and $(\sqrt{3} \times \sqrt{3})$ R30°.

- LEED and STM allows for the first evidence of Rb intercalated monolayer graphene.
 - Two Rb ordering have been observed, i.e. (2×2) and $(\sqrt{3} \times \sqrt{3})$ R30°.
 - At RT, Rb immediately intercalates monolayer graphene.

- LEED and STM allows for the first evidence of Rb intercalated monolayer graphene.
 - Two Rb ordering have been observed, i.e. (2×2) and $(\sqrt{3} \times \sqrt{3})$ R30°.
 - At RT, Rb immediately intercalates monolayer graphene.
 - Intercalation occurs through SiC step sites or near phase boundaries .

Further studies

Acknowledgements

Stefano Veronesi

Stefan Heun

Camilla Coletti

Neeraj Mishra

Thank you for your attention!

