

28 Aug - 1 Sep 2023, Lodz, Poland

Platinum-covered graphene as hydrogen storage medium

Letizia Ferbel¹, S. Veronesi¹, A. Rossi², C. Coletti², S. Heun¹

¹NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy ²Center for Nanotechnology Innovation IIT@NEST, Pisa, Italy

letizia.ferbel@sns.it

Motivation

V. Jain et al., *J. Mater Sci.* **55**, 1865-1903 (2020)

Platinum-covered graphene as hydrogen storage medium

Motivation

V. Jain et al., J. Mater Sci. 55, 1865-1903 (2020)

Why Graphene

Graphene is lightweight, inexpensive, robust, chemically stable

Large surface area (\sim 2600 m²/g)

V. Jain et al., J. Mater Sci. 55, 1865-1903 (2020)

Why Graphene

Graphene is lightweight, inexpensive, robust, chemically stable

Large surface area (~2600 m²/g)

Hydrogen storage possible by chemisorption and physisorption

- *Chemisorption* feasible but *H*₂ must be cracked
- *Physisorption* of H_2 requires low temperatures and/or high pressure

V. Tozzini et al., Phys. Chem. Chem. Phys. 15, 80 (2013)

Functionalized graphene

Modify graphene with various chemical species, such as alkaline earth metals (e.g. Ca) or transition metals (e.g. Pt)

- Functionalized graphene predicted to absorb up to 9 wt% of hydrogen
- *H*₂-storage at nearly ambient conditions

Lee et al., Nano Lett. 10, 793 (2010)

Durgen et al., Phys. Rev. B 77, 085405 (2007)

Pt deposition with e-beam evaporator at constant evaporation flux

Probing the surface morphology with a scanning tunneling microscope

Pt deposition with e-beam evaporator at constant evaporation flux

Sample exposure at Hydrogen (D $_2$) at $1 \cdot 10^{-7}$ mbar for 5 min

Measuring hydrogen desorption with a mass spectrometer

Mass

*All the experiments were conducted in-situ under UHV conditions

1 um

AFM *ex-situ

Samples composition:

- > 70 % MLG
- ➤ < 30 % BLG</p>

AFM *ex-situ

Samples composition:

- > 70 % MLG
- ➤ < 30 % BLG</p>

AFM *ex-situ

Samples composition: ➤ > 70 % MLG

≻ < 30 % BLG

AFM *ex-situ

- Samples composition:
- > 70 % MLG
- ➤ < 30 % BLG</p>

AFM *ex-situ

STM

Pt deposition time: 4 min Pt covered area: 17 ± 4 %

Pt deposition time: 24 min Pt covered area: 77 \pm 13 %

Pt deposition time: 8 min Pt covered area: $26 \pm 2\%$

Pt deposition time: 28 min Pt covered area: 85 ± 9 %

Pt deposition time: 16 min Pt covered area: $49 \pm 6 \%$

Pt deposition time: 32 min Pt covered area: $93 \pm 3 \%$

*STM scans size (100 nm × 100 nm)

Platinum-covered graphene as hydrogen storage medium

Pt deposition time: 4 min Pt covered area: $17 \pm 4 \%$

Pt deposition time: 24 min Pt covered area: 77 \pm 13 %

Pt deposition time: 8 min Pt covered area: $26 \pm 2\%$

Pt deposition time: 28 min Pt covered area: 85 ± 9 %

Pt deposition time: 16 min Pt covered area: $49 \pm 6 \%$

Pt deposition time: 32 min Pt covered area: $93 \pm 3 \%$

*STM scans size (100 nm × 100 nm)

Platinum-covered graphene as hydrogen storage medium

With constant sticking coefficient, one would expect a linear relationship between the Pt deposition time and the total islands volume

With constant sticking coefficient, one would expect a linear relationship between the Pt deposition time and the total islands volume

ECOSS36

Loss of material at low coverages is due to a sticking coefficient of Pt on graphene <1

No Pt intercalation at RT was observed

Coverage: $17 \pm 4 \% - 0.33 \pm 0.10 \text{ ML}$

Two growth mechanisms that have different sticking coefficients

* Successive Pt evaporation onto the same sample

Pt islands on graphene can store Hydrogen.

TDS of D₂ for different Pt coverage

TDS of D₂ for different Pt coverage

Pt islands on graphene can store Hydrogen.

The stored amount increases with the amount of deposited platinum.

* Successive Pt evaporation onto the same sample

⁸

Why TDS up to 400°C

TDS up to 400°C

Area coverage and volume are conserved

No significant changes in the morphology

TDS up to 750°C

Area coverage decreases to about 30%, volume is conserved while clusters avg. height and density increases

Ad-hoc sample with Pt coverage: $49 \pm 6 \% - 1.4 \pm 0.2 \text{ ML}$

TDS clearly shows the presence of two Gaussian peaks superimposed on a linearly increasing background signal

*First TDS experiment

Insights in the Pt growth mechanism on epitaxial graphene

Insights in the Pt growth mechanism on epitaxial graphene

Experimental demonstration of molecular hydrogen storage at room-temperature in Pt-functionalized graphene

Insights in the Pt growth mechanism on epitaxial graphene

Pt content: 100 % - 6.34 MI

> 93 % - 5.4 ML 87 % - 4.23 MI 77 % - 3 29 MI

> > - 2.15 M

49 % - 1.39 ML 26 % - 0.53 ML 17 % - 0.33 ML

- 0 MI

Experimental demonstration of molecular hydrogen storage at room-temperature in Pt-functionalized graphene

units]

desorption signal [arb.

Demonstration of three different hydrogen adsorption mechanisms on Pt functionalized graphene at moderate temperature

100 200 300 400 500 600 700 800

Temperature [°C]

D₂ desorption signal [arb. units]

0

Insights in the Pt growth mechanism on epitaxial graphene

Pt content: 100 % - 6.34 M

> Experimental demonstration of molecular hydrogen storage at room-temperature in Pt-functionalized graphene

> > 100 200 300 400 500 600 700 800

Temperature [°C]

Demonstration of three different hydrogen adsorption mechanisms on Pt functionalized graphene at moderate temperature

> Further measurements are in order to better understand the nature of the hydrogen adsorption sites

Raw data

unitsl

sorption signal [arb.

0

Thank you all for your attention

Stefano Veronesi

Ylea Vlamidis

Stefan Heun

Antonio Rossi

Camilla Coletti

Leonardo Sabattini

28 Aug - 1 Sep 2023, Lodz, Poland

